

Centered on Solutions<sup>™</sup>

### <u>Structural Design of</u> <u>Antenna Frame and Analysis</u> <u>of CL&P Tower</u>

AT&T Mobility Site Ref: CT2117

CL&P Structure No. 783 78' Electric Transmission Lattice Tower

> 200 Edgemark Acres Meriden, CT

CENTEK Project No. 13305

Date: January 7, 2014 Rev 4: October 6, 2014



Prepared for: AT&T Mobility 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067

## Table of Contents

#### SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION

#### SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
  - RISA 3-D
  - PLS TOWER

#### SECTION 3 - DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS
- NU DESIGN CRITERIA TABLE
- PCS SHAPE FACTOR CRITERIA
- WIRE LOADS SHEET

#### SECTION 4 - DRAWINGS

- T-1 TITLE SHEET
- N-1 DESIGN BASIS AND GENERAL NOTES
- N-2 EARTHWORK AND FOUNDATION CONSTRUCTION NOTES
- N-3 CONCRETE CONSTRUCTION NOTES
- N-4 STRUCTURAL STEEL NOTES
- MI-1 MODIFICATION INSPECTION REQUIREMENTS
- S-1 TOWER ELEVATION AND FEEDLINE PLAN
- S-2 FOUNDATION REINFORCEMENT DETAILS
- S-3 TOWER REINFORCEMENT DETAILS
- S-4 ANTENNA FRAME ELEVATIONS
- S-5 ANTENNA FRAME PLAN AND DETAILS

TABLE OF CONTENTS TOC-1

## SECTION 5 - EIA/TIA-222-F LOAD CALCULATIONS FOR ANTENNA FRAME

ANTENNA FRAME WIND & ICE LOAD

#### SECTION 6 - ANTENNA FRAME DESIGN PER EIA/TIA-222F

- LOAD CASES AND COMBINATIONS (TIA/EIA LOADING)
- RISA 3-D ANALYSIS REPORT
- MAST CONNECTION ANALYSIS

## SECTION 7 - NECS/NU LOAD CALCULATIONS FOR OBTAINING REACTIONS APPLIED TO UTILITY STRUCTURE

ANTENNA FRAME WIND LOAD

# SECTION 8 – ANTENNA FRAME ANALYSIS PER NESC/NU FOR OBTAINING REACTIONS APPLIED TO UTILITY STRUCTURE

- LOAD CASES AND COMBINATIONS (NESC/NU LOADING)
- RISA 3-D ANALYSIS REPORT

# SECTION 9 - PLS TOWER RESULTS FROM ANTENNA FRAME REACTIONS CALCULATED IN RISA WITH NESC/NU CRITERIA

- COAX CABLE LOAD ON CL&P TOWER CALCULATION
- PLS REPORT
- LOCAL STRESS CHECK UNREINFORCED SECTION
- LOCAL STRESS CHECK REINFORCED SECTION
- FOUNDATION ANALYSIS

#### SECTION 10 - REFERENCE MATERIAL

- RFDS SHEET
- EQUIPMENT CUT SHEETS

TABLE OF CONTENTS TOC-2

#### Introduction

The purpose of this report is to design a proposed antenna mast and analyze the existing 78' CL&P tower located at 200 Edgemark Acres in Meriden, CT for the proposed AT&T Mobility antenna installation.

The proposed loads consist of the following:

#### AT&T MOBILITY (Proposed):

Antennas: Six (6) Andrew CCI HPA-65R-BUU-H8 panel antennas, three (3) Andrew CCI OPA-65R-LCUU-H8 panel antennas and eighteen (18) CCI BPDB7823VG12A TMA's mounted on a Site-Pro Ultra-Low Profile Platform p/n ULP12-496 with a RAD center elevation of 88-ft above grade.

<u>Coax Cables:</u> Thirty-six (36) 1-5/8"  $\varnothing$  coax cables running on two (2) legs of the existing tower as indicated in section 4 of this report.

#### Primary assumptions used in the analysis

- Allowable steel stresses are defined by AISC-ASD 9<sup>th</sup> edition for design of the ANTENNA Mast and antenna supporting elements.
- ASCE Manual No. 10-97, "Design of Latticed Steel Transmission Structures", defines allowable steel stresses for evaluation of the CL&P utility tower.
- All utility tower members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- All coaxial cable will be installed as indicated in Section 4 of this report.
- ANTENNA Mast will be properly installed and maintained.
- No residual stresses exist due to incorrect tower erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- ANTENNA Mast and utility tower will be in plumb condition.
- Utility tower was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.

#### <u>Analysis</u>

Structural design of the antenna frame was independently completed using the current version of RISA-3D computer program licensed to CENTEK Engineering, Inc.

The antenna mast consisting of a HSS12.5"x0.625" conforming to ASTM A500 Grade 42 (Fy = 42ksi) mounted on a 18'-6" antenna frame connected at eight points to the existing tower was analyzed for its ability to resist loads prescribed by the TIA/EIA standard. Section 5 of this report details these gravity and lateral wind loads. NESC prescribed loads were also applied to the antenna mast in order to obtain reactions needed for analyzing the CL&P tower structure. These loads are developed in Section 7 of this report. Load cases and combinations used in RISA-3D for TIA/EIA loading and for NESC/NU loading are listed in report Sections 6 and 8, respectively.

An envelope solution was first made to determine maximum and minimum forces, stresses, and deflections to confirm the selected section as adequate. Additional analyses were then made to determine the NESC forces to be applied to the CL&P tower structure.

The RISA-3D program contains a library of all AISC shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized. The forces calculated in RISA-3D using NESC guidelines were then applied to the CL&P tower using PLS-Tower. Maximum usage for the tower was calculated considering the additional forces from the mast and associated appurtenances.

#### Design Basis

Our analysis was performed in accordance with EIA-222-F-1996, ASCE Manual No. 10-97, "Design of Latticed Steel Transmission Structures", NESC C2-2007 and Northeast Utilities Design Criteria.

The CL&P tower structure, considering existing and future conductor and shield wire loading, with the proposed antenna mast was analyzed under two conditions:

#### UTILITY TOWER ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility structure to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the NU Design Criteria Table, NESC C2-2007 ~ Construction Grade B, and ASCE Manual No. 10-97, "Design of Latticed Steel Transmission Structures".

Load cases considered:

| Wind P<br>Radial<br>Vertical<br>Wind C | ase 1: NESC Heavy ressure                                                                             | 4.0 psf<br>0.5"<br>1.50<br>2.50<br>1.65 |
|----------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Wind S                                 | ase 2: NESC Extreme peed1 lce Thickness1                                                              | 10 mph <sup>(1)</sup><br>0"             |
| Note 1:                                | NESC C2-2007, Section25, Rule 250C: Extremely Loading, 1.25 x Gust Response Factor (wind second gust) |                                         |

Structural Analysis – 78-ft CL&P Tower # 783 AT&T Mobility Antenna Upgrade – CT2117 Meriden, CT Rev 4 ~ October 6, 2014

#### ANTENNA FRAME ANALYSIS

ANTENNA mast, appurtenances and connections to the utility tower were analyzed and designed in accordance with the NU Design Criteria Table, TIA/EIA-222-F, and AISC-ASD standards.

Load cases considered:

Load Case 1:

Wind Speed...... 85 mph (2)

Radial Ice Thickness.......0"

Load Case 2:

Radial Ice Thickness...... 0.5"

Note 2: Per NU Mast Design Criteria Exception 1.

#### Results

#### ANTENNA FRAME ASSEMBLY

The antenna frame was determined to be structurally **adequate**.

| Member                        | Stress Ratio<br>(% of capacity) | Result |
|-------------------------------|---------------------------------|--------|
| HSS12.5"x0.625" Mast          | 44.2%                           | PASS   |
| HSS 6x6x3/8 Brace             | 89.0%                           | PASS   |
| Mast Connection to CL&P Tower | 81.6% (1)                       | PASS   |

Note 1 – 1/3 increase in allowable stress not used for connection to tower per OTRM 059.

#### UTILITY TOWER

This analysis finds that the subject utility structure is adequate to support the existing ANTENNA mast and related appurtenances. The tower stresses meet the requirements set forth by the ASCE Manual No. 10-97, "Design of Latticed Steel Transmission Structures", for the applied NESC Heavy and Hi-Wind load cases. The detailed analysis results are provided in Section 9 of this report. The analysis results are summarized as follows:

With the proposed tower reinforcements detailed in Section 4 of this report a maximum usage of 96.54% occurs in the utility tower under the NESC Extreme loading condition.

#### **TOWER SECTION:**

The utility structure with the proposed tower reinforcements detailed in Section 4 of this report was found to be within allowable limits.

| Tower Member | Stress Ratio<br>(% of capacity) | Result |
|--------------|---------------------------------|--------|
| Angle Leg13X | 96.54%                          | PASS   |

#### FOUNDATION AND ANCHORS

The existing foundation consists of four (4) 16-inx25-in tapering to 28-inx25-in x 6.25-ft long reinforced concrete piers on four (4) 4-ft-6-in square x 2-ft thick reinforced concrete pads. The base of the tower is connected to the foundation by one (1) anchor stub per leg. Foundation information was obtained from a foundation exploration conducted on May 5, 2014.

Structural Analysis – 78-ft CL&P Tower # 783 AT&T Mobility Antenna Upgrade – CT2117 Meriden, CT Rev 4 ~ October 6, 2014

#### **BASE REACTIONS:**

From PLS-Tower analysis of CL&P tower based on NESC/NU prescribed loads.

| Load Case         | Shear      | Uplift       | Compression |
|-------------------|------------|--------------|-------------|
| NESC Heavy Wind   | 25.29 kips | 26.19 kips   | 80.81 kips  |
| NESC Extreme Wind | 60.66 kips | 1113.12 kips | 130.05 kips |

Note 1 - 10% increase to be applied to the above tower base reactions for foundation verification per OTRM 051 Note 1 - Reactions are combined leg reactions.

#### FOUNDATION:

The foundation with the proposed reinforcements detailed in Section 4 of this report was found to be within allowable limits.

| Foundation                          | Design<br>Limit | Allowable<br>Limit    | Proposed<br>Loading <sup>(2)</sup> | Result |
|-------------------------------------|-----------------|-----------------------|------------------------------------|--------|
| Reinforced<br>Conc. Pad<br>and Pier | Overturning     | 1.0 FS <sup>(1)</sup> | 1.66 FS <sup>(1)</sup>             | PASS   |

Note 1: FS denotes Factor of Safety

Note 2: 10% increase to PLS base reactions used in foundation analysis per OTRM 051.

#### Conclusions and Recommendations

This analysis shows that the subject utility tower with the proposed reinforcements outlined below and detailed in Section 4 of this report <u>is adequate</u> to support the proposed AT&T equipment installation.

- Replacement of sixteen (8) L1-3/4x1-3/4x3/16 diagonal members with L2x2x5/16.
- Replacement of two (2) L2x2x3/16 horizontal members with L2x2x1/4.
- Installation of one (1) 27'x27'x3.5' reinforced concrete mat.

The analysis is based, in part on the information provided to this office by Northeast Utilities and AT&T Mobility. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

OF CONNECTION OF

# STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Structural Analysis – 78-ft CL&P Tower # 783 AT&T Mobility Antenna Upgrade – CT2117 Meriden, CT Rev 4 ~ October 6, 2014

#### <u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM~RISA-3D

RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

#### **Modeling Features:**

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems & conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

#### **Analysis Features:**

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases & rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements
- 1-Way members, for tension only bracing, slipping, etc.

Structural Analysis – 78-ft CL&P Tower # 783 AT&T Mobility Antenna Upgrade – CT2117 Meriden, CT Rev 4 ~ October 6, 2014

- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

#### **Graphics Features:**

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot & print virtually everything with color coding & labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

#### Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000, EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd & 3rd, HSS Specification, CAN/CSA-S16.1-1994 & 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths
  of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, Marino\WARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Structural Analysis – 78-ft CL&P Tower # 783 AT&T Mobility Antenna Upgrade – CT2117 Meriden, CT Rev 4 ~ October 6, 2014

#### Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member & joint deflections, beam & plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

Structural Analysis – 78-ft CL&P Tower # 783 AT&T Mobility Antenna Upgrade – CT2117 Meriden, CT Rev 4 ~ October 6, 2014

#### <u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM~PLS-TOWER

PLS-TOWER is a Microsoft Windows program for the analysis and design of steel latticed towers used in electric power lines or communication facilities. Both self-supporting and guyed towers can be modeled. The program performs design checks of structures under user specified loads. For electric power structures it can also calculate maximum allowable wind and weight spans and interaction diagrams between different ratios of allowable wind and weight spans.

#### Modeling Features:

- Powerful graphics module (stress usages shown in different colors)
- Graphical selection of joints and members allows graphical editing and checking
- Towers can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces
- Can extract geometry and connectivity information from a DXF CAD drawing
- CAD design drawings, title blocks, drawing borders or photos can be tied to structure model
- XML based post processor interface
- Steel Detailing Neutral File (SDNF) export to link with detailing packages
- Can link directly to line design program PLS-CADD
- Automatic generation of structure files for PLS-CADD
- Databases of steel angles, rounds, bolts, guys, etc.
- Automatic generation of joints and members by symmetries and interpolations
- Automated mast generation (quickly builds model for towers that have regular repeating sections) via graphical copy/paste
- Steel angles and rounds modeled either as truss, beam or tension-only elements
- Guys are easily handled (can be modeled as exact cable elements)

#### Analysis Features:

- Automatic handling of tension-only members
- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Automatic calculation of tower dead, ice, and wind loads as well as drag coefficients according to:
  - ASCE 74-1991
  - NESC 2002
  - NESC 2007
  - IEC 60826:2003
  - EN50341-1:2001 (CENELEC)
  - EN50341-3-9:2001 (UK NNA)
  - EN50341-3-17:2001 (Portugal NNA)
  - ESAA C(b)1-2003 (Australia)
  - TPNZ (New Zealand)
  - REE (Spain)
  - EIA/TÌA 222-F
  - ANSI/TIA 222-G
  - CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Minimization of problems caused by unstable joints and mechanisms
- Automatic bandwidth minimization and ability to solve large problems
- Design checks according to (other standards can be added easily):
  - ASCE Standard 10-90

Structural Analysis – 78-ft CL&P Tower # 783 AT&T Mobility Antenna Upgrade – CT2117 Meriden, CT Rev 4 ~ October 6, 2014

- AS 3995 (Australian Standard 3995)
- BS 8100 (British Standard 8100)
- EN50341-1 (CENELEC, both empirical and analytical methods are available)
- ECCS 1985
- NGT-ECCS
- PN-90/B-03200
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- EDF/RTE Resal
- IS 802 (India Standard 802)

#### Results Features:

- Design summaries printed for each group of members
- Easy to interpret text, spreadsheet and graphics design summaries
- Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Capability to batch run multiple tower configurations and consolidate the results
- Automated optimum angle member size selection and bolt quantity determination

Tool for interactive angle member sizing and bolt quantity determination.

<u>Criteria for Design of PCS Facilities On or</u> <u>Extending Above Metal Electric Transmission</u> <u>Towers & Analysis of Transmission Towers</u> Supporting PCS Masts (1)

#### Introduction

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA/EIA-222 (Rev. F) covering the design of telecommunications structures specifies a working strength/allowable stress design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that it does not exceed some defined percentage of failure strength (allowable stress).

ANSI Standard C2-2007 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50-year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.

Note 1: Prepared from documentation provide from Northeast Utilities.

DESIGN CRITERIA SECTION 3-1

#### PCS Mast

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA/EIA-222 (Rev. F) with two exceptions:

- 1. An 85 mph extreme wind speed shall be used for locations in all counties throughout the NU system.
- 2. The allowable stress increase of TIA Section 3.1.1.1 is allowed for the mast section, but is disallowed for the mast to structure connection design.

The combined wind and ice condition shall consider  $\frac{1}{2}$ " radial ice in combination with the wind load (0.75 Wi) as specified in TIA section 2.3.16.

#### ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "NU Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

DESIGN CRITERIA SECTION 3-2



# Northeast Utilities Overhead Transmission Standards



#### **Attachment A**

### **NU Design Criteria**

|                    |                                                                     |                                                                                             | Basic Wind Speed                                                                                                                                                         | Pressure                                                                                                                                         | : Height Factor | Gust Factor       | Load or Stress Factor                                             | Force Coef - Shape Factor               |
|--------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-------------------------------------------------------------------|-----------------------------------------|
|                    |                                                                     |                                                                                             | V (MPH)                                                                                                                                                                  | Q (PSF)                                                                                                                                          | Kz              | Gh                |                                                                   |                                         |
| L.                 | TIA/EIA                                                             | Antenna Mount                                                                               | TIA                                                                                                                                                                      | TIA<br>(.75Wi)                                                                                                                                   | TIA             | TIA               | TIA, Section 3.1.1.1 disallowed for connection design             | TIA                                     |
| Ice Condition      | Heavy                                                               | Tower/Pole Analysis with<br>antennas extending above top<br>of Tower/Pole<br>(Yield Stress) |                                                                                                                                                                          | 4                                                                                                                                                | 1.00            | 1.00              | 2.50                                                              | 1.6 Flat Surfaces<br>1.3 Round Surfaces |
| lce                | NESC Heavy                                                          | Tower/Pole Analysis with<br>Antennas below top of<br>Tower/Pole<br>(on two faces)           |                                                                                                                                                                          | 4                                                                                                                                                | 1.00            | 1.00              | 2.50                                                              | 1.6 Flat Surfaces<br>1.3 Round Surfaces |
|                    |                                                                     | Conductors:                                                                                 |                                                                                                                                                                          |                                                                                                                                                  | Conductor       | loads provided by | NU                                                                |                                         |
| ndtion             | TIA/EIA                                                             | Antenna Mount                                                                               | 85                                                                                                                                                                       | TIA                                                                                                                                              | TIA             | TIA               | TIA, Section<br>3.1.1.1<br>disallowed for<br>connection<br>design | TIA                                     |
| High Wind Condtion | Extreme<br>ïnd                                                      | Tower/Pole Analysis with<br>antennas extending above top<br>of Tower/Pole                   | Use                                                                                                                                                                      | Use NESC C2-2007, Section 25, Rule 250C: Extreme Wind Loading 1.25 x Gust Response Factor Height above ground level based on top of Mast/Antenna |                 |                   |                                                                   | 1.6 Flat Surfaces<br>1.3 Round Surfaces |
| High V             | NESC Extr<br>Wind                                                   | Tower/Pole Analysis with<br>Antennas below top of<br>Tower/Pole                             | Use                                                                                                                                                                      | Use NESC C2-2007, Section 25, Rule 250C: Extreme Wind Loading Height above ground level based on top of Tower/Pole                               |                 |                   |                                                                   |                                         |
|                    |                                                                     | Conductors:                                                                                 |                                                                                                                                                                          |                                                                                                                                                  | Conductor       | loads provided by | NU                                                                |                                         |
| treme              | Tower/Pole Analysis with antennas extending above top of Tower/Pole |                                                                                             | Use NESC C2-2007, Section 25, Rule 250D: Extreme Ice with Wind Loading 4PSF Wind Load 1.25 x Gust Response Factor Height above ground level based on top of Mast/Antenna |                                                                                                                                                  |                 | actor             | 1.6 Flat Surfaces<br>1.3 Round Surfaces                           |                                         |
| NESC Extreme       | Ice with Wind<br>Conditon*                                          | Tower/Pole Analysis with<br>Antennas below top of<br>Tower/Pole                             |                                                                                                                                                                          | Use NESC C2-2007, Section 25, Rule 250D: Extreme Ice with Wind Loading 4PSF Wind Load Height above ground level based on top of Tower/Pole       |                 |                   |                                                                   | 1.6 Flat Surfaces<br>1.3 Round Surfaces |
| _                  |                                                                     | Conductors:                                                                                 |                                                                                                                                                                          |                                                                                                                                                  | Conductor       | loads provided by | NU                                                                |                                         |
|                    |                                                                     |                                                                                             |                                                                                                                                                                          |                                                                                                                                                  |                 |                   |                                                                   |                                         |
|                    |                                                                     | * Only for Structures Installed af                                                          | ter 2007                                                                                                                                                                 |                                                                                                                                                  |                 |                   |                                                                   |                                         |

| Communication Antennas on Transmission Structures (CL&P & WMECo Only) |                             |             |            |  |
|-----------------------------------------------------------------------|-----------------------------|-------------|------------|--|
| Northeast Utilities                                                   | Design                      | OTRM 059    | Rev.1      |  |
| Approved by: KMS (NU)                                                 | NU Confidential Information | Page 7 of 9 | 03/17/2011 |  |



## Northeast Utilities Overhead Transmission Standards



Shape Factor Criteria shall be per TIA Shape Factors.

2) STEP 2 - The electric transmission structure analysis and evaluation shall be performed in accordance with NESC requirements and shall include the mast and antenna loads determined from NESC applied loading conditions (not TIA/EIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)

The structure shall be analyzed using yield stress theory in accordance with Attachment A, "NU Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:

- a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
- b) Conductors and related devices and hardware (wire loads will be provided by NU).
- c) Electric Transmission Structure
  - i) The loads from the wireless communication equipment components based on NESC and NU Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower.
  - ii) Shape Factor Multiplier:

| NESC Structure Shape                  | Cd  |
|---------------------------------------|-----|
| Polyround (for polygonal steel poles) | 1.3 |
| Flat                                  | 1.6 |
| Open Lattice                          | 3.2 |

iii) When Coaxial Cables are mounted along side the pole structure, the shape multiplier shall be:

| Mount Type                                      | Cable Cd | Pole Cd |
|-------------------------------------------------|----------|---------|
| Coaxial Cables on outside periphery (One layer) | 1.45     | 1.45    |
| Coaxial Cables mounted on stand offs            | 1.6      | 1.3     |

d) The uniform loadings and factors specified for the above components in Attachment A, "NU Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.

**Note:** The NESC does not require ice load be included in the supporting structure. (Ice on conductors and shield wire only, and NU will provide these loads).

e) Mast reaction loads shall be evaluated for local effects on the transmission structure members at the attachment points.

| Communication Antennas on Transmission Structures (CL&P & WMECo Only) |                             |             |            |  |
|-----------------------------------------------------------------------|-----------------------------|-------------|------------|--|
| Northeast Utilities                                                   | Design                      | OTRM 059    | Rev.1      |  |
| Approved by: KMS (NU)                                                 | NU Confidential Information | Page 3 of 9 | 03/17/2011 |  |



CONDUCTOR

Job:

AT&T Meriden 1690 line EAST Circuit

Spec. Number

Page of **Sheet** 

of

6/13/08

**Description:** 

Computed by Checked by Date

Date

**INPUT DATA** 

TOWER ID:

783, East Circuit

Structure Height (ft) : 78

Wind Zone: Central CT (green)

Wind Speed:

110 mph

**Tower Type:** ○ Suspension

Extreme Wind Model: PCS Addition

Strain

CONDUCTOR

#### Shield Wire Properties:

| ,             | BACK        | AHEAD       |
|---------------|-------------|-------------|
| NAME =        | 4/0 Cu      | 4/0 Cu      |
| DESCRIPTION = | 4/0         | 4/0         |
| STRANDING =   | 7.000 Cu    | 7.000 Cu    |
| DIAMETER =    | 0.522 in    | 0.522 in    |
| WEIGHT =      | 0.653 lb/ft | 0.653 lb/ft |



#### **Horizontal Line Tensions:**

| COND. E            |                     | ck Co       | MD' WHE             | EAD                    |
|--------------------|---------------------|-------------|---------------------|------------------------|
|                    | <del>Oliold -</del> | - Conductor | <del>Chield -</del> | <del>- Oundanter</del> |
| NESC HEAVY =       | 4,500 ~             | na          | 4,500~              | na                     |
| EXTREME WIND =     | 3,831 ⊬             | na          | 3,796~              | na                     |
| LONG. WIND =       | na                  | na          | na                  | na                     |
| 250D COMBINED =    | na                  | na          | na                  | na                     |
| NESC W/O OLF =     | na                  | na          | na                  | na                     |
| 60 DEG F NO WIND = | 1,849 🖍             | na          | 1,876~              | na                     |

#### **Line Geometry:**

|                    |       |       |        |              | SUM |
|--------------------|-------|-------|--------|--------------|-----|
| LINE ANGLE (deg) = | BACK: | 0     | AHEAD: | 0            | 0   |
| WIND SPAN (ft) =   | BACK: | 388 ✓ | AHEAD: | 327 🗸        | 715 |
| WEIGHT SPAN (ft) = | BACK: | 496∽  | AHEAD: | 471 <i>~</i> | 967 |



AT&T Meriden 1690 line EAST Circuit

Spec. Number Computed by

Page **Sheet** 

of of 6/13/08

**Description:** 

Checked by

Date Date

#### **WIRE LOADING AT ATTACHMENTS**

**TOWER ID:** 

783, East Circuit

Wind Span = Weight Span = Total Angle = 715 ft 967 ft

0 degrees

Type of Insulator Attachment = STRAIN

Broken Wire Span = AHEAD SPAN

1. NESC RULE 250B Heavy Loading:

| Snield Wire= |
|--------------|
| Conductor =  |

| INTACT CONDITION |              |          | BROKE      | N WIRE CON   | IDITION  |
|------------------|--------------|----------|------------|--------------|----------|
| Horizontal       | Longitudinal | Vertical | Horizontal | Longitudinal | Vertical |
| 906 lb           | 0 lb         | 1,870 lb | 491 lb     | 7,425 lb     | 960 lb   |
| #VALUE!          | #VALUE!      | 1,051 lb | #VALUE!    | #VALUE!      | 501 lb   |

#### 2. NESC RULE 250C Transverse Extreme Wind Loading:

|              | Horizontal     | Longitudinal | Vertical |
|--------------|----------------|--------------|----------|
| Shield Wire= | 867 lb         | 35 lb        | 632 lb   |
| Conductor =  | <b>WVALUE!</b> | #VALUE!      | 400 H    |

|               | Horizontal | Longitudinal | Vertical |
|---------------|------------|--------------|----------|
| Shield Wire = | #VALUE!    | #VALUE!      | 632 lb   |
| Conductor =   | #VALUE!    | #VALUE!      | 400 lb   |

|               | Horizontal | Longitudinal Vertical |          |  |
|---------------|------------|-----------------------|----------|--|
| Shield Wire = | #VALUE!    | #VALUE!               | 2,463 lb |  |
| Conductor =   | #VALUE!    | #VALUE!               | 1,603 lb |  |

|               | Horizontal | Longitudinal | Vertical |
|---------------|------------|--------------|----------|
| Shield Wire = | #VALUE!    | #VALUE!      | 1,247 lb |
| Conductor =   | #VALUE!    | #VALUE!      | 701 lb   |

#### 6. 60 Deg. F, No Wind

|              | Horizontal | Longitudinal | Vertical |
|--------------|------------|--------------|----------|
| Chield Wires | 0 lb       | 27 lb        | 632 lb   |
| Conductor =  | #WALUE!    | #\\ALUE!     | 400 lb   |

|               | Horizontal | Longitudinal | Vertical |
|---------------|------------|--------------|----------|
| Shield Wire = | 0 lb       | 41 lb        | 948 lb   |
| Conductor =   | #VALUE!    | #VALUE!      | 600 lb   |

#### NOTE: All loads include required overload factors (OLF's).



## SHIELDWIRE

Job:

AT&T Meriden 1690 line EAST Shield Wire

Spec. Number

Page of Sheet of

6/17/08

Description:

Computed by

Date

Checked by

Date

**INPUT DATA** 

TOWER ID:

783, East Circuit

Structure Height (ft): 78

Wind Zone: Central CT (green)

Wind Speed:

110 mph

Tower Type : O Suspension

Extreme Wind Model: PCS Addition

Strain

**Shield Wire Properties:** 

|               | BACK         | AHEAD        |
|---------------|--------------|--------------|
| NAME =        | 11/32 CW     | 11/32 CW     |
| DESCRIPTION = | 11/32        | 11/32        |
| STRANDING =   | 7 #9 Cu Weld | 7 #9 Cu Weld |
| DIAMETER =    | 0.343 in     | 0.343 in     |
| WEIGHT =      | 0.257 lb/ft  | 0.257 lb/ft  |

#### **Conductor Properties:**



#### **Horizontal Line Tensions:**

|                    | BACK    |                        | AH      | EAD                    |
|--------------------|---------|------------------------|---------|------------------------|
|                    | Shield  | <del>-Conduct</del> or | Shield  | <del>-Conducto</del> r |
| NESC HEAVY =       | 3,600~  | na                     | 3,600 ℃ | na                     |
| EXTREME WIND =     | 2,800~  | na                     | 2,806 🗸 | na                     |
| LONG. WIND =       | na      | na                     | na      | na                     |
| 250D COMBINED =    | na      | na                     | na      | na                     |
| NESC W/O OLF =     | na      | na                     | na      | na                     |
| 60 DEG F NO WIND = | 1,011 🖊 | na                     | 1,098 🖍 | na                     |

#### **Line Geometry:**

| _                  |       |       |        |      | SUM |
|--------------------|-------|-------|--------|------|-----|
| LINE ANGLE (deg) = | BACK: | . 0   | AHEAD: | 0    | 0   |
| WIND SPAN (ft) =   | BACK: | 388 🛩 | AHEAD: | 327~ | 715 |
| WEIGHT SPAN (ft) = | BACK: | 496 - | AHEAD: | 471~ | 967 |



Job:

AT&T Meriden 1690 line EAST Shield Wire

Spec. Number Computed by Page Sheet

of of 6/17/08

Description:

Checked by

Date Date

#### WIRE LOADING AT ATTACHMENTS

TOWER ID:

783, East Circuit

Wind Span = 715 ft Weight Span = 967 ft Total Angle = 0 degrees

Broken Wire Span = AHEAD SPAN Type of Insulator Attachment = STRAIN

#### 1. NESC RULE 250B Heavy Loading:

|               | INTACT CONDITION |              |                      | BROKEN WIRE CONDITION |              |                |
|---------------|------------------|--------------|----------------------|-----------------------|--------------|----------------|
|               | Horizontal       | Longitudinal | Vertical             | Horizontal            | Longitudinal | Vertical       |
| Shield Wire = | 800 lb           | 0 lb         | 1,133 lb             | 434 lb                | 5,940 lb     | 582 lb         |
| Conductor -   | #\/\LUE!-        | #\\ALUE!     | <del>-1,051 lb</del> | -#VALUE!              | #WALUE!      | 501 <b>4</b> b |

#### 2. NESC RULE 250C Transverse Extreme Wind Loading:

|               | Horizontal | Longitudinal      | Vertical |
|---------------|------------|-------------------|----------|
| Shield Wire = | 569 lb     | 6 lb              | 249 lb   |
| Conductor     | #WALUE!    | #\/ <u>\\LUE!</u> | 100 Ho   |

|               | , Horizontal | Longitudinal | Vertical |
|---------------|--------------|--------------|----------|
| Shield Wire = | #VALUE!      | #VALUE!      | 249 lb   |
| Conductor =   | #VALUE!      | #VALUE!      | 400 lb   |

| <b>1</b>      |            | • •          |          |  |
|---------------|------------|--------------|----------|--|
|               | Horizontal | Longitudinal | Vertical |  |
| Shield Wire = | #VALUE!    | #VALUE!      | 1,864 lb |  |
| Conductor =   | #VALUE!    | #VALUE!      | 1,603 lb |  |

|               | Horizontal | Longitudinal | Vertical |
|---------------|------------|--------------|----------|
| Shield Wire = | #VALUE!    | #VALUE!      | 756 lb   |
| Conductor =   | #VALUE!    | #VALUE!      | 701 lb   |

#### 6. 60 Deg. F, No Wind

| Honzontai | Longitudinai | Vertical |
|-----------|--------------|----------|
| 0 lb      | 87 lb        | 249 lb   |
| #\/^ _UE! | #\/ALUE!     | 400 lb   |
| _         | 0 lb         | 0        |

|               | Horizontal | Longitudinal | Vertical |
|---------------|------------|--------------|----------|
| Shield Wire = | 0 lb       | 131 lb       | 373 lb   |
| Conductor =   | #VALUE!    | #VALUE!      | 600 lb   |

NOTE: All loads include required overload factors (OLF's).



CONDUCTOR

Job:

AT&T Meriden 1690 line WEST Conductor

Spec. Number

Page Sheet of of

Description:

Computed by Checked by

Date

6/17/08 Date

**INPUT DATA** 

TOWER ID:

783, WEST Circuit

Structure Height (ft):

Wind Zone: Central CT (green)

Wind Speed:

110 mph

Tower Type: • Suspension

Extreme Wind Model: PCS Addition

O Strain

CONDUCTOR

#### Shield Wite Properties:

|               | BACK        | AHEAD       |
|---------------|-------------|-------------|
| NAME =        | 4/0 Cu      | 4/0 Cu      |
| DESCRIPTION = | 4/0         | 4/0         |
| STRANDING =   | 7.000 Cu    | 7.000 Cu    |
| DIAMETER =    | 0.522 in    | 0.522 in    |
| WEIGHT =      | 0.653 lb/ft | 0.653 lb/ft |



#### **Horizontal Line Tensions:**

| <u>د</u>             | DND BA              | CK C      | HA GUOS | EAD       |
|----------------------|---------------------|-----------|---------|-----------|
|                      | <del>-Chield-</del> | Conductor | Chiele  | Conductor |
| NESC HEAVY =         | 4,500~              | na        | 4,500 ~ | na        |
| EXTREME WIND =       | 3,814 🛩             | na        | 3,814~  | na        |
| LONG. WIND =         | na                  | na        | na      | na        |
| 250D COMBINED =      | na                  | na        | na      | na        |
| NESC W/O OLF =       | na                  | na        | na      | na        |
| 60 DEG F NO WIND = [ | 1,861 ~             | na        | 1,861 ′ | na        |

#### **Line Geometry:**

|                    |       |       |        |       | SUM |
|--------------------|-------|-------|--------|-------|-----|
| LINE ANGLE (deg) = | BACK: | 0     | AHEAD: | 0     | 0   |
| WIND SPAN (ft) =   | BACK: | 357∽  | AHEAD: | 357 ≁ | 714 |
| WEIGHT SPAN (ft) = | BACK: | 484 - | AHEAD: | 484 ~ | 968 |



Job:

AT&T Meriden 1690 line WEST Conductor

Spec. Number

Page Sheet

of of 6/17/08

Description:

Computed by Checked by

Date Date

**WIRE LOADING AT ATTACHMENTS** 

TOWER ID:

783, WEST Circuit

Wind Span = Weight Span = 714 ft 968 ft

Type of Insulator Attachment = SUSPENSION

Broken Wire Span = AHEAD SPAN

Total Angle =

0 degrees

1. NESC RULE 250B Heavy Loading:

Conductor =

| INT                 | ACT CONDITI  | ON       | BROKE      | N WIRE CON   | DITION   |
|---------------------|--------------|----------|------------|--------------|----------|
| Horizontal          | Longitudinal | Vertical | Horizontal | Longitudinal | Vertical |
| 906 lb              | 0 lb         | 1,871 lb | 453 lb     | 5,175 lb     | 936 lb   |
| <del>-#VALUE!</del> | #VALUE!      | 1,051 lb | #VALUE!    | #VALUE!      | 320 lb   |

2. NESC RULE 250C Transverse Extreme Wind Loading:

Conductor =

Vertical Horizontal Longitudinal 873 lb 0 lb 632 lb

Horizontal Longitudinal Vertical Shield Wire = **#VALUE! #VALUE!** 632 lb Conductor = **#VALUE!** #VALUE! -400 lb

Horizontal Longitudinal Vertical Shield Wire = **#VALUE! #VALUE!** 2.465 lb Conductor = **#VALUE! #VALUE!** 1,604 lb

Horizontal Longitudinal Vertical Shield Wire = **#VALUE!** #VALUE! 1,248 lb Conductor = **#VALUE! #VALUE!** 701 lb

6. 60 Deg. F, No Wind

Horizontal Longitudinal Vertical 0 lb 0 lb 632 lb Conductor =

Horizontal Longitudinal Vertical Shield Wire = 0 lb 0 lb 949 lb Conductor = **#VALUE! #VALUE!** 600 lb

NOTE: All loads include required overload factors (OLF's).

## SHIELD WIRE



Job:

AT&T Meriden 1690 line WEST Shield Wire

Spec. Number

Page Sheet

of of

Description:

Computed by Checked by

Date

6/17/08 Date

**INPUT DATA** 

TOWER ID:

783, WEST Circuit

Structure Height (ft) : [

Wind Zone: Central CT (green)

Wind Speed:

110 mph

Tower Type : • Suspension

Extreme Wind Model: PCS Addition

○ Strain

**Shield Wire Properties:** 

| ı             | BACK        | AHEAD        |
|---------------|-------------|--------------|
| NAME =        | 11/32 CW    | 11/32 CW     |
| DESCRIPTION = | 11/32       | 11/32        |
| STRANDING =   |             | 7 #9 Cu Weld |
| DIAMETER =    | 0.343 in    | 0.343 in     |
| WEIGHT = [    | 0.257 lb/ft | 0.257 lb/ft  |

#### Conductor Properties.



#### **Horizontal Line Tensions:**

|                      | BA      | CK        | AH      | EAD        |
|----------------------|---------|-----------|---------|------------|
|                      | Shield  | Conductor | Shield  | -Conductor |
| NESC HEAVY =         | 3,600∽  | na        | 3,600~  | na         |
| EXTREME WIND =       | 2,803 🖍 | na        | 2,803 ~ | na         |
| LONG. WIND =         | na      | na        | na      | na         |
| 250D COMBINED =      | na      | na        | na      | na         |
| NESC W/O OLF =       | na      | na        | na      | na         |
| 60 DEG F NO WIND = [ | 1,049 ~ | na        | 1,049 < | na         |

#### **Line Geometry:**

|                    |       |       |        |       | SUM   |
|--------------------|-------|-------|--------|-------|-------|
| LINE ANGLE (deg) = | BACK: | 0     | AHEAD: | 0     | 0     |
| WIND SPAN (ft) =   | BACK: | 357 - | AHEAD: | 357 ∽ | 714   |
| WEIGHT SPAN (ft) = | BACK: | 484 - | AHEAD: | 484∽  | 968 - |



Job:

AT&T Meriden 1690 line WEST Shield Wire

Spec. Number

Page Sheet of of

Description:

Computed by Checked by Date

6/17/08 Date

#### **WIRE LOADING AT ATTACHMENTS**

TOWER ID:

783, WEST Circuit

Wind Span = Weight Span =

Total Angle =

714 ft 968 ft

0 degrees

Broken Wire Span = AHEAD SPAN Type of Insulator Attachment = SUSPENSION

#### 1. NESC RULE 250B Heavy Loading:

|               | INT        | ACT CONDITI  | ON       | BROKEN WIRE CONDITION |              |          |  |
|---------------|------------|--------------|----------|-----------------------|--------------|----------|--|
|               | Horizontal | Longitudinal | Vertical | Horizontal            | Longitudinal | Vertical |  |
| Shield Wire = | 799 lb     | 0 lb         | 1,134 lb | 400 lb                | 4,140 lb     | 567 lb   |  |
| Conductor     | #VALUE!    | #VALUE!      | 1,051 lb | #VALUE!               | #VALUE!      | 526 lb   |  |

### 2. NESC RULE 250C Transverse Extreme Wind Loading:

|                      |              | Longitudinal | Vertical |
|----------------------|--------------|--------------|----------|
| Shield Wire =        | 574 lb       | 0 lb         | 249 lb   |
| <u> </u>             | 40./41.1.1.  | W/ALUE       |          |
| <del>oondaotoi</del> | " V/ (EO E : | n-VITEUE:    |          |

|               | Horizontal | Longitudinal | Vertical |
|---------------|------------|--------------|----------|
| Shield Wire = | #VALUE!    | #VALUE!      | 249 lb   |
| Conductor =   | #VALUE!    | #VALUE!      | 400 lb   |

|               |         | Longitudinal | Vertical |
|---------------|---------|--------------|----------|
| Shield Wire = |         | #VALUE!      | 1,865 lb |
| Conductor =   | #VALUE! | #VALUE!      | 1,604 lb |

|               |         | Longitudinal | Vertical |
|---------------|---------|--------------|----------|
| Shield Wire = |         | #VALUE!      | 756 lb   |
| Conductor =   | #VALUE! | #VALUE!      | 701 lb   |

#### 6. 60 Deg. F, No Wind

|               | Horizontal | Longitudinal | Vertical |
|---------------|------------|--------------|----------|
| Shield Wire = | 0 lb       | 0 lb         | 249 lb   |
| Conductor     | #WALUE!    | #WALUE!      | 400db    |

|               | Horizontal | Longitudinal | Vertical |
|---------------|------------|--------------|----------|
| Shield Wire = | 0 lb       | 0 lb         | 373 lb   |
| Conductor =   | #VALUE!    | #VALUE!      | 600 lb   |

### NOTE: All loads include required overload factors (OLF's).



## **TOWER REINFORCEMENT DESIGN**

# CL&P STRUCT. NO. 783 200 EDGEMARK ACRES MERIDEN, CT 06451



### PROJECT SUMMARY

SITE ADDRESS: 200 EDGEMARK ACRES

MERIDEN, CT 06451

PROJECT COORDINATES: LAT: 41°-31'-51.70N

LON: 72°-50'-33.58W

ELEV:±348' AMSL

CL&P STRUCT NO: 783

CL&P CONTACT: ROBERT GRAY 860.665.3175

AT&T SITE REF.: CT2117

AT&T CONTACT: DAVID VIVIAN 413.218.5042

ANTENNA CL HEIGHT: 88'-0"

ENGINEER OF RECORD: CENTEK ENGINEERING, INC.

63-2 NORTH BRANFORD ROAD BRANFORD, CT 06405

CARLO F. CENTORE, PE

203.488.0580 ext. 122

### SHEET INDEX

CENTEK CONTACT:

| SHT. NO. | DESCRIPTION                               | REV. |
|----------|-------------------------------------------|------|
| T-1      | TITLE SHEET                               | 4    |
|          |                                           |      |
| N-1      | DESIGN BASIS & GENERAL NOTES              | 4    |
| N-2      | EARTHWORK & FOUNDATION CONSTRUCTION NOTES | 4    |
| N-3      | CONCRETE CONSTRUCTION NOTES               | 4    |
| N-4      | STRUCTURAL STEEL NOTES                    | 4    |
|          |                                           |      |
| MI-1     | MODIFICATION INSPECTION REQUIREMENTS      | 4    |
|          |                                           |      |
| S-1      | TOWER ELEVATION & FEEDLINE PLAN           | 4    |
| S-2      | FOUNDATION REINFORCEMENT DETAILS          | 4    |
| S-3      | TOWER REINFORCEMENT DETAILS               | 4    |
| S-4      | ANTENNA FRAME ELEVATIONS                  | 4    |
| S-5      | ANTENNA FRAME PLAN AND DETAILS            | 4    |

| ı   |                             | NAS    |            | B١    | <b>′</b> : |                                          |              |               | Tu                   | IL                   |                               | l   |
|-----|-----------------------------|--------|------------|-------|------------|------------------------------------------|--------------|---------------|----------------------|----------------------|-------------------------------|-----|
| ı   | CH                          | ŀK'    | D          | BY:   |            |                                          |              |               | C                    | FC                   |                               | l   |
|     |                             |        |            |       |            | REVISED FRAME                            | CONSTRUCTION | CONSTRUCTION  | ISSUED FOR NU REVIEW | ISSUED FOR NU REVIEW | ESCRIPTION                    |     |
|     |                             |        |            |       |            | CFC                                      | CFC          | CFC           | CFC                  | CFC                  | DRAWN BY CHK'D BY DESCRIPTION |     |
|     |                             |        |            |       |            | TJL                                      | TJL          | TIL           | 1/1                  | TJL                  | DRAWN BY                      |     |
|     |                             |        |            |       |            | 10/6/14                                  | 8/27/14      | 1/1/14        | 6/4/14               | 1/7/14               | DATE                          |     |
| ı   |                             |        | 11         | 11    | ***        | 1                                        | 9            | -2            | 1.                   | ٧                    | REV.                          | l   |
| ,   | 1                           | _      | ij         | Ţ     |            | į                                        | 1:           | 7.            | ,                    | 1                    | ,                             | •   |
| WA. | PROFESSIONAL ENGINEER SEAL. | 0,877. | いるというできている | 1000円 | 300        | TO T | OCCUP ON     | 140. CB3360 A | STACKED OF           | Separacoodo Co       | SYDAY SA                      | 111 |
| 4   | <                           | j.     | 43         | 900   | 2000       | D                                        | R            | O'            | Ç                    | /                    |                               | 1   |
| ĺ   | 1                           | 11     | 11         | 11    | 11         | 11                                       | 11           | 13            | 11                   | 2.                   |                               |     |

DESIGNED BY:

Centered on Southers\*

(200) 488-0390 Fax
62-3 North Brondrod Road
Branford, CT 08-605

www.Centeting.com

AT&T MOBILITY
TOWER REINFORGEDIN DESIGN

CT2117

CT2117

CL&P STRUCTURE 783

MENDEN ACRES

MENDEN ACRES

TITLE SHEET



### **DESIGN BASIS**

- GOVERNING CODE: 2003 INTERNATIONAL BUILDING CODE AS 1. REFER TO STRUCTURAL ANALYSIS AND REINFORCEMENT MODIFIED BY THE 2005 CT STATE BUILDING CODE AND 2009 AMENDMENTS.
- TIA/EIA-222-F-1996, ASCE MANUAL NO. 72 "DESIGN OF STEEL TRANSMISSION POLE STRUCTURES SECOND EDITION". NESC C2-2007 AND NORTHEAST UTILITIES DESIGN CRITERIA.
- DESIGN CRITERIA

WIND LOAD: (PCS MAST) BASIC WIND SPEED (V) = 85 MPH (FASTEST MILE); BASED ON TIA/EIA-222F AND NU MAST DESIGN CRITERIA EXCEPTION 1.

WIND LOAD: (UTILITY POLE & FOUNDATION) BASIC WIND SPEED (V) =110 MPH (3-SECOND GUST) BASED ON NESC C2-2007, SECTION 25 RULE 250C.

### **GENERAL NOTES**

- DESIGN PREPARED BY CENTEK ENGINEERING, INC., FOR AT&T DATED 10/6/14.
- 2. TOWER GEOMETRY AND STRUCTURE MEMBER SIZES WERE OBTAINED FROM THE ORIGINAL TOWER DESIGN DOCUMENTS PREPARED BY BLACK-KNOX DIVISION DRAWING NOS. P-51656. P-52562. P-51382. AND P-51925 THRU 51928 CIRCA 1948.
- 3. THE TEMPORARY DETACHMENT AND/OR REPLACEMENT OF TOWER MEMBERS SHALL BE DONE ONE AT A TIME AND SHALL BE CONDUCTED ON DAYS WITH LESS THAN 15 MPH WIND PRESENT. NO MEMBER SHALL BE LEFT DISCONNECTED FOR THE NEXT WORKING DAY.
- 4. ALL STEEL REINFORCEMENT SHOWN HEREIN APPLIES TO ALL SIDES OF THE TOWER.
- 5. ALL REPLACEMENT STEEL MEMBERS SHALL BE INSTALLED WITH A325-N BOLTS (SIZE TO MATCH EXISTING). UNLESS OTHERWISE NOTED BELOW.
- 6. THE TOWER STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER REINFORCEMENTS ARE COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE & SEQUENCE AND TO INSURE THE SAFETY OF THE TOWER STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, UNDERPINNING, TEMPORARY ANCHORS, GUYING, BARRICADES, ETC. AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY. MAINTAIN EXISTING SITE OPERATIONS AND COORDINATE WORK WITH TOWER OWNER.
- 7. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE GOVERNING BUILDING CODE.
- 8. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS SCOPE OF WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 9. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK. THIS INCLUDES VERIFYING ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. CONTRACTOR SHALL TAKE FIELD MEASUREMENTS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK.

- 10. TOWER REINFORCEMENTS SHALL BE CONDUCTED BY FIELD CREWS EXPERIENCED IN THE ASSEMBLY AND ERECTION OF TRANSMISSION STRUCTURES. ALL SAFETY PROCEDURES. RIGGING AND ERECTION METHODS SHALL BE STANDARD TO THE INDUSTRY AND IN COMPLIANCE WITH OSHA.
- 11. EXISTING COAXIAL CABLES AND ALL ACCESSORIES SHALL BE RELOCATED AS NECESSARY AND REINSTALLED BY THE CONTRACTOR WITHOUT INTERRUPTION IN SERVICE WHERE THEY ARE IN CONFLICT WITH THE TOWER REINFORCEMENT WORK.
- 12. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.
- 13. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.

|  |  |  | ΛE | z |  |
|--|--|--|----|---|--|

DESIGNED BY: DRAWN BY:

TJL

CFC

111777



488-0580 488-8587 I dorth Bran (203) (203) (3-2) (3-2)

CT2117
STRUCTURE 7
SON EDGENARY ACRES
MERDEN, OT 00461 T&T 1/7/14

SCALE: AS SHOWN JOB NO. 13305

**DESIGN BASIS AND GENERAL NOTES** 



### **EARTHWORK NOTES**

- 1. COMPACTED GRAVEL FILL SHALL BE FURNISHED AND PLACED AS A FOUNDATION FOR STRUCTURES, WHERE SHOWN ON THE CONTRACT DRAWINGS OR DIRECTED BY THE ENGINEER.
- 2. CRUSHED STONE FILL SHALL BE PLACED IN 12" MAX. LIFTS AND CONSOLIDATED USING A HAND OPERATED VIBRATORY PLATE COMPACTOR WITH A MINIMUM OF 2 PASSES OF COMPACTOR PER LIFT.
- 3. COMPACTED GRAVEL FILL TO BE WELL GRADED BANK RUN GRAVEL MEETING THE FOLLOWING GRADATION REQUIREMENTS:

| SIEVE DESIGNATION | % PASSING |
|-------------------|-----------|
| 1 ½"              | 100       |
| No. 4             | 40-70     |
| No. 100           | 5-20      |
| No. 200           | 4-8       |

4. CRUSHED STONE TO BE UNIFORMLY GRADED, CLEAN, HARD PROCESS AGGREGATE MEETING THE FOLLOWING GRADATION REQUIREMENTS:

| SIEVE DESIGNATION | % PASSING |
|-------------------|-----------|
| 1"                | 100       |
| 3/4"              | 90-100    |
| ½"                | 0-15      |
| 3/8"              | 0-5       |

- 5. SELECT BACKFILL FOR FOUNDATION WALLS SHALL BE FREE OF ORGANIC MATERIAL, TOPSOIL, DEBRIS AND BOULDERS LARGER THAN 6".
- 6. GRAVEL AND GRANULAR FILL SHALL BE INSTALLED IN 10" MAX. LIFTS. COMPACTED TO 95% MIN. AT MAX. DRY DENSITY.
- 7. NON WOVEN GEOTEXTILE FOR SEPARATION PURPOSES SHALL BE MIRAFI 140N, OR ENGINEER APPROVED EQUAL.

### FOUNDATION CONSTRUCTION NOTES

- 1. ALL FOOTINGS SHALL BE PLACED ON SUITABLE, COMPACTED SOIL HAVING ADEQUATE BEARING CAPACITY AND FREE OF ORGANIC CONTENT, CLAY, OR OTHER UNSUITABLE MATERIAL. ADDITIONAL EXCAVATION MAY BE REQUIRED BELOW FOOTING ELEVATIONS INDICATED IF UNSUITABLE MATERIAL IS ENCOUNTERED.
- 2. SUBGRADE PREPARATION: IF UNSUITABLE SOIL IS ENCOUNTERED, REMOVE ALL UNSUITABLE MATERIALS FROM BELOW PROPOSED STRUCTURE FOUNDATIONS AND COMPACT EXPOSED SOIL SURFACES. PLACE AND COMPACT APPROVED GRAVEL FILL. PLACEMENT OF ALL COMPACTED FILL MUST BE UNDER SUPERVISION OF AN APPROVED TESTING LABORATORY. FILL SHALL BE COMPACTED IN LAYERS NOT TO EXCEED 10" BEFORE COMPACTION. DETERMINE MAXIMUM DRY DENSITY IN ACCORDANCE WITH ASTM D1557-70 AND MAKE ONE (1) FIELD DENSITY TEST IN ACCORDANCE WITH ASTM D2167-66 FOR EACH 50 CUBIC YARDS OF COMPACTED FILL. BUT NOT LESS THAN ONE (1) PER LAYER, TO INSURE COMPACTION TO 95% OF MAX. DRY DENSITY.
- 3. ALL SOIL SURROUNDING AND UNDER ALL FOOTINGS SHALL BE KEPT REASONABLY DRY AND PROTECTED FROM FREEZING AND FROST ACTION DURING THE COURSE OF CONSTRUCTION.
- 4. WHERE GROUNDWATER IS ENCOUNTERED, DEWATERING SHALL BE ACCOMPLISHED CONTINUOUSLY AND COMPLETELY DURING FOUNDATION CONSTRUCTION. PROVIDE CRUSHED STONE AS REQUIRED TO STABILIZE FOOTING SUBGRADE.
- 5. ALL FOOTINGS ARE TO REST ON FIRM SOIL, REGARDLESS OF ELEVATIONS SHOWN ON THE DRAWINGS, BUT IN NO CASE MAY FOOTING ELEVATIONS BE HIGHER THAN INDICATED ON THE FOUNDATION PLAN, UNLESS SPECIFICALLY DIRECTED BY THE ENGINEER.
- 6. FOUNDATION WATERPROOFING AND DAMPPROOFING SHALL COMPLY WITH BUILDING CODE REQUIREMENTS UNLESS A MORE SUBSTANTIAL SYSTEM IS INDICATED OR SPECIFIED.



DESIGNED BY:



WHITTHING THE

| DATE:   | 1/7/14   |
|---------|----------|
| SCALE:  | AS SHOWN |
| JOB NO. | 13305    |
|         |          |
|         |          |

EARTHWORK AND FOUNDATION CONSTRUCTION NOTES



### CONCRETE CONSTRUCTION

CONCRETE CONSTRUCTION SHALL CONFORM TO THE FOLLOWING STANDARDS:

ACI 211 - STANDARD PRACTICE FOR SELECTING PROPORTIONS FOR NORMAL AND HEAVYWEIGHT CONCRETE.

ACI 301 - SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS.

ACL 302 - GUIDE FOR CONCRETE FLOOR AND SLAB CONSTRUCTION

ACI 304 - RECOMMENDED PRACTICE FOR MEASURING. MIXING, TRANSPORTING, AND PLACING CONCRETE.

ACI 306.1 - STANDARD SPECIFICATION FOR COLD WEATHER CONCRETING

ACI 318 - BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE.

2. CONCRETE SHALL BE AIR ENTRAINED AND SHALL DEVELOP 12. NEW CONCRETE FOOTING SHALL BE ALLOWED TO CURE AT COMPRESSIVE STRENGTH IN 28 DAYS AS FOLLOWS:

ALL CONCRETE 3.500 PSI

- 3. REINFORCING STEEL SHALL BE 60,000 PSI YIELD STRENGTH.
- 4. ALL DETAILING, FABRICATION, AND ERECTION OF REINFORCING BARS, UNLESS OTHERWISE NOTED, MUST FOLLOW THE LATEST ACL CODE AND LATEST ACL "MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES".
- 5. CONCRETE COVER OVER REINFORCING SHALL BE 3 INCHES.
- NO STEEL WIRE, METAL FORM TIES, OR ANY OTHER METAL SHALL REMAIN WITHIN THE REQUIRED COVER OF ANY CONCRETE SURFACE.
- 7. ALL REINFORCEMENT SHALL BE CONTINUOUS. SPLICES WILL NOT BE ALLOWED.
- 8. NO TACK WELDING OF REINFORCING WILL BE PERMITTED.
- 9. NO CALCIUM CHLORIDE OR ADMIXTURES CONTAINING MORE THAN 1 % CHLORIDE BY WEIGHT OF ADMIXTURE SHALL BE USED IN THE CONCRETE.
- 10. TOP OF FOOTING SURFACES SHALL RECEIVE A UNIFORM FLOAT FINISH. CURE FOOTING SURFACE WITH SONNEBORN KURE-N-SEAL WB OR APPROVED EQUAL, APPLIED AS RECOMMENDED BY MANUFACTURER.

11. PREPARATION OF SURFACES WHERE NEW CONCRETE WILL INTERFACE WITH EXISTING CAISSON: THE PERIMETER OF THE EXISTING CAISSON SHALL BE THOROUGHLY CLEANED OF ALL DIRT AND DELETERIOUS MATERIALS PRIOR TO APPLICATION OF BONDING AGENT. CONTRACTOR SHALL NOTIFY NORTHEAST UTILITIES 24 HOURS IN ADVANCE OF CLEANING.

SIKADUR 32, HI-MOD OR ENGINEER APPROVED EQUAL SHALL BE APPLIED. IN STRICT ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. TO ALL INTERFACING SURFACES BEFORE CONCRETE IS PLACED.

CAULK JOINT BETWEEN EXISTING CONCRETE PIER AND NEW CONCRETE WITH SIKAFLEX 1-A BY SIKA CORP. OR ENGINEER APRROVED EQUAL.

SUBMIT MANUFACTURER'S PRODUCT SPECIFICATION DATA AND INSTALLATION INSTRUCTIONS FOR REVIEW AND APPROVAL BY OWNER.

- LEAST 14 DAYS BEFORE WIRELESS ANTENNA MOUNT, ANTENNAS, AND CABLES ARE INSTALLED.
- 13. INSPECTION AND TESTING OF CONCRETE WORK SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY, APPROVED AND PAID BY THE OWNER. THE INSPECTOR SHALL OBSERVE THE CONDITION OF SOILS AND FORMWORK BEFORE FOOTINGS ARE PLACED. SIZE. SPACING AND LOCATION OF REINFORCEMENT, AND PLACEMENT OF CONCRETE.
- 14. THE TESTING COMPANY SHALL ALSO OBTAIN A MINIMUM OF THREE (3) COMPRESSIVE STRENGTH TEST SPECIMENS FOR EACH CONCRETE MIX DESIGN. ONE SPECIMEN TESTED AT 7 DAYS, ONE AT 28 DAYS, AND ONE HELD IN RESERVE FOR FUTURE TESTING. IF NEEDED.
- 15. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE OWNER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.



| Centered on Solutions* | 2003, 488-0580<br>2003, 488-8387 Fax<br>53-2 North Branford Road<br>Sranford, CT 06-405 | www.CentekEng.com |
|------------------------|-----------------------------------------------------------------------------------------|-------------------|
| Centered on Sc         | (203) 488-0580<br>(203) 488-8587<br>63-2 North Brai<br>Branford, CT 0                   | www.Cente         |
|                        |                                                                                         |                   |

| AT&T MOBILITY TOWER REPURCEMENT DESIGN  CT2117 | CL&P STRUCTURE 783 200 EDGEMAPK ACHES | MENDEN, CT 08451 |
|------------------------------------------------|---------------------------------------|------------------|
|------------------------------------------------|---------------------------------------|------------------|

| DATE:   | 1/7/14   |
|---------|----------|
| SCALE:  | AS SHOWN |
| JOB NO. | 13305    |

CONCRETE CONSTRUCTION NOTES



#### STRUCTURAL STEEL

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD).
- 2. MATERIAL SPECIFICATIONS
  - A. STRUCTURAL STEEL (W SHAPES)——ASTM A992 (FY = 50 KSI)
  - B. STRUCTURAL STEEL (OTHER SHAPES)——ASTM A36 (FY = 36 KSI).
  - C. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B, (FY = 46 KSI)
  - D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B, (FY = 42 KSI)
  - E. PIPE---ASTM A53 GRADE B (FY = 35 KSI)
- 3. FASTENER SPECIFICATIONS
  - A. CONNECTION BOLTS---ASTM A325-N, UNLESS OTHERWISE SCHEDULED.
  - B. U-BOLTS---ASTM A307
  - C. ANCHOR RODS---ASTM F1554
  - D. WELDING ELECTRODES---ASTM E70XX FOR A36 & A572\_GR50 STEELS, ASTM E80XX FOR A572\_GR65 STEEL.
- 4. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- 5. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 6. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 7. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 8. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 9. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 10. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.

- 11. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 12. CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". ALL WELDING SHALL BE DONE USING THE SCHEDULED ELECTRODES AND WELDING SHALL CONFORM TO AISC AND D1.1 WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLET J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION" 9TH EDITION. AT THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED.
- 13. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 14. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 15. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 16. LOCK WASHER ARE NOT PERMITTED FOR A325 BOLTED STEEL ASSEMBLIES.
- 17. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 18. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 19. FABRICATE BEAMS WITH MILL CAMBER UP.
- 20. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 21. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.



DESIGNED BY:

Content of solutions (200) 488-4897 Fax (220) 488-8897 Fax (220) 488-8897 Fax (22 North Bronford Road Branford, CT 08-40.5 Fax (22 North Bronford Road Branford, CT 08-40.5 Fax (22 North Bronford Road Branford, CT 08-40.5 Fax (22 North Bronford) F

William Phone

| AT&T MOBILITY                           |  |
|-----------------------------------------|--|
| CT2117                                  |  |
| CL&P STRUCTURE 783                      |  |
| 200 EDCEMARK ACRES<br>MERIDEN, CT 06451 |  |

DATE: 1/7/14

SCALE: AS SHOWN

JOB NO. 13305

STRUCTURAL NOTES



|                  | PRE-CONSTUCTION                         |                   | DURING CONSTRUCTION                       |                   | POST-CONSTRUCTION                             |
|------------------|-----------------------------------------|-------------------|-------------------------------------------|-------------------|-----------------------------------------------|
| CHEDULED<br>ITEM | REPORT ITEM                             | SCHEDULED<br>ITEM | REPORT ITEM                               | SCHEDULED<br>ITEM | REPORT ITEM                                   |
| X                | EOR MODIFICATION INSPECTION DRAWING     | X                 | FOUNDATIONS                               | X                 | MODIFICATION INSPECTOR RECORD REDLINE DRAWING |
| X                | EOR APPROVED SHOP DRAWINGS              | X                 | EARTHWORK: BACKFILL MATERIAL & COMPACTION | _                 | POST-INSTALLED ANCHOR ROD PULL-OUT TEST       |
| _                | EOR APPROVED POST-INSTALLED ANCHOR MPII | X                 | REBAR & FORMWORK GEOMETRY VERIFICATION    | X                 | PHOTOGRAPHS                                   |
| _                | FABRICATION INSPECTION                  | X                 | CONCRETE TESTING                          |                   |                                               |
| -                | FABRICATOR CERTIFIED WELDER INSPECTION  | X                 | STEEL INSPECTION                          |                   |                                               |
| X                | MATERIAL CERTIFICATIONS                 | _                 | POST INSTALLED ANCHOR ROD VERIFICATION    |                   |                                               |
|                  |                                         | _                 | BASE PLATE GROUT VERIFICATION             |                   |                                               |
|                  |                                         | _                 | CONTRACTOR'S CERTIFIED WELD INSPECTION    |                   |                                               |
|                  |                                         |                   |                                           |                   |                                               |

MODIFICATION INSPECTION REPORT REQUIREMENTS

NOTES:

- 1. REFER TO MODIFICATION INSPECTION NOTES FOR ADDITIONAL REQUIREMENTS
- "X" DENOTES DOCUMENT REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT.
- 3. "-" DENOTES DOCUMENT NOT REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT.
- 4. FOR FNGINFFR OF RECORD
- 4. MPII "MANUFACTURER'S PRINTED INSTALLATION GUIDELINES"

### **GENERAL**

- 1. THE MODIFICATION INSPECTION IS A VISUAL INSPECTION OF STRUCTURAL MODIFICATIONS, TO INCLUDE A REVIEW AND COMPILATION OF SPECIFIED SUBMITTALS AND CONSTRUCTION INSPECTIONS, AS AN ASSURANCE OF COMPLIANCE WITH THE CONSTRUCTION DOCUMENTS PREPARED UNDER THE DIRECTION OF THE ENGINEER OF RECORD (EOR).
- 2. THE MODIFICATION INSPECTION IS TO CONFIRM INSTALLATION CONFIGURATION AND GENERAL WORKMANSHIP AND IS NOT A REVIEW OF THE MODIFICATION DESIGN EFFECTIVENESS AND INTENT RESIDES WITH THE ENGINEER OF RECORD.
- 3. TO ENSURE COMPLIANCE WITH THE MODIFICATION INSPECTION REQUIREMENTS THE GENERAL CONTRACTOR (GC) AND THE MODIFICATION INSPECTOR (MI) COMMENCE COMMUNICATION UPON AUTHORIZATION TO PROCEED BY THE CLIENT. EACH PARTY SHALL BE PROACTIVE IN CONTACTING THE OTHER. THE EOR SHALL BE CONTACTED IF SPECIFIC GC/MI CONTACT INFORMATION IS NOT MADE AVAILABLE.
- 4. THE GC SHALL PROVIDE THE MI WITH A MINIMUM OF 5 BUSINESS DAYS NOTICE OF IMPENDING INSPECTIONS.
- 5. WHEN POSSIBLE, THE GC AND MI SHALL BE ON SITE DURING THE MODIFICATION INSPECTION TO HAVE ANY NOTED DEFICIENCIES ADDRESSED DURING THE INITIAL MODIFICATION INSPECTION.

### MODIFICATION INSPECTOR (MI)

- 1. THE MI SHALL CONTACT THE GC UPON AUTHORIZATION BY THE CLIENT TO:
  - REVIEW THE MODIFICATION INSPECTION REPORT REQUIREMENTS.

ON—SITE COLD GALVANIZING VERIFICATION

CONTRACTOR AS—BUILT REDLINE DRAWINGS

- WORK WITH THE GC IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS.
- DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNS.
- 2. THE MI IS RESPONSIBLE FOR COLLECTION OF ALL INSPECTION AND TEST REPORTS, REVIEWING REPORTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING ON—SITE INSPECTIONS AND COMPILATION & SUBMISSION OF THE MODIFICATION INSPECTION REPORT TO THE CLIENT AND THE EOR.

### GENERAL CONTRACTOR (GC)

- 1. THE GC IS REQUIRED TO CONTACT THE GC UPON AUTHORIZATION TO PROCEED WITH CONSTRUCTION BY THE CLIENT TO:
  - REVIEW THE MODIFICATION INSPECTION REPORT REQUIREMENTS.
  - WORK WITH THE MI IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS.
  - DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNS.
- 2. THE GC IS RESPONSIBLE FOR COORDINATING AND SCHEDULING IN ADVANCE ALL REQUIRED INSPECTIONS AND TESTS WITH THE MI.

# CORRECTION OF FAILING MODIFICATION INSPECTION

- 1. SHOULD THE STRUCTURAL MODIFICATION NOT COMPLY WITH THE REQUIREMENTS OF THE CONSTRUCTION DOCUMENTS, THE GC SHALL WORK WITH THE MODIFICATION INSPECTOR IN A VIABLE REMEDIATION PLAN AS FOLLOWS:
  - CORRECT ALL DEFICIENCIES TO COMPLY WITH THE CONTRACT DOCUMENTS AND COORDINATE WITH THE MI FOR A FOLLOW UP INSPECTION.
  - WITH CLIENT AUTHORIZATION, THE GC MAY WORK WITH THE EOR TO REANALYZE THE MODIFICATION USING THE AS-BUILT CONDITION.

### REQUIRED PHOTOGRAPHS

- 1. THE GC AND MI SHALL AT MINIMUM PHOTO DOCUMENT THE FOLLOWING FOR INCLUSION IN THE MODIFICATION INSPECTION REPORT:
  - PRE-CONSTRUCTION: GENERAL CONDITION OF THE SITE.
  - DURING CONSTRUCTION: RAW MATERIALS, CRITICAL DETAILS, WELD PREPARATION, BOLT INSTALLATION & TORQUE, FINAL INSTALLED CONDITION & SURFACE COATING REPAIRS.
  - POST-CONSTRUCTION: FINAL CONDITION OF THE SITE





William Phone

TOWER REINFORDING PAIRSON

TOWER REINFORDING DESIGNA

CT2117

CT2117

CL&P STRUCTURE 783

200 EDCEMAR AGRES

MERCEN GT 00460

MODIFICATION INSPECTION REQUIREMENTS

JOB NO. 13305















|                            |                            | TO White SO IN               |       |       |     |     |                  |           |
|----------------------------|----------------------------|------------------------------|-------|-------|-----|-----|------------------|-----------|
|                            |                            | Converge Co.                 |       |       |     |     |                  |           |
| THE TOTAL PORT             |                            | A PROFESSIONAL ENGINEER SEAL | ,     |       |     |     | DE<br>DF<br>CH   | DE<br>DF  |
| AI&I MOBILIIY              | CII A II K engineering     | 0 877 0 000 4 1              | , ,   |       |     |     | _                | SIC       |
| TOWER REINFORCEMENT DESIGN | Centered on Solutions*     | というというできたい                   | 11    |       |     |     | N D              | SNI<br>/N |
|                            | 1                          | 丁のり                          | 11    |       |     |     | BY               |           |
| C+0+1                      | 11                         | COCC COCC                    | 1     |       |     |     |                  | B<br>Y:   |
| 2 1 1 2                    | (203) 488-0580             | TO THE P                     | 4 10  | /6/14 | TIL | CFC | REVISED FRAME :- | Y:        |
| 207 701 1701 010           | (2.2) North Brothard Board | One P                        | 13 8/ | 27/14 | TJL | CFC | ONSTRUCTION      |           |

| Centered on Solutions* | (203) 488-0390<br>(203) 488-8397 Fax<br>63-2 North Branford Rt<br>Branford, CT 06405 | www.CentekFng.co |
|------------------------|--------------------------------------------------------------------------------------|------------------|
|                        | Ω.                                                                                   |                  |

CL&P STRUCTURE 783
200 EDGBANK ACRES
MENDEN, CT 08481

| П | DATE:   | 1/7/14   |
|---|---------|----------|
|   | SCALE:  | AS SHOWN |
| П | JOB NO. | 13305    |

TOWER REINFORCEMENT **DETAILS** 

S-3





ESIGNED BY:

Carrege on southers
(200) 488-0580
(200) 488-0580
(25.2) 488-0580
(25.2) North Renried Road
Branford, CT 06405

AT&T MOBILITY
Tower rediversurent desion

CT2117

CL&P STRUCTURE 783

200 EDGBANK ACTES
METDEN, CT 00451

DATE: 1/7/14

SCALE: AS SHOWN

JOB NO. 13305

ANTENNA FRAME PLAN & DETAILS

SHEET NO.

Sheet No. 11 of 11



Centered on Solutions www.centekena.com Branford, CT 06405 F: (203) 488-8587 Subject:

Location:

Rev. 3: 8/25/14

Load Analysis of PCS Mast and AT&T

Equipment on CL&P Tower # 783

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

### Development of Design Heights, Exposure Coefficients, and Velocity Pressures Per TIA/EIA

#### Wind Speeds

Basic Wind Speed (User Input per NU Mast Design Criteria Exception 1) V := 85mph Basic Wind Speed with Ice (User Input per TIA/EIA-222-F Section 2.3.16)  $V_i := 74$ mph

#### Heights above ground level, z

Mast  $z_{mast} = 77.75$ (User Input) ft

AT&T  $z_{att} := 88$ (User Input)

Mount  $z_{mnt} = 88$ (User Input)

Coax  $z_{coax} := 83$ (User Input)

#### Exposure Coefficients, kz

(per TIA/EIA-222-F Section 2.3.3)

 $Kz_{mast} := \left(\frac{z_{mast}}{33}\right)^{7} = 1.277$ Mast

 $Kz_{att} := \left(\frac{z_{att}}{33}\right)^{7} = 1.323$ AT&T

 $Kz_{mnt} := \left(\frac{z_{mnt}}{33}\right)^{\frac{-7}{7}} = 1.323$ Mount

 $Kz_{coax} := \left(\frac{z_{coax}}{33}\right)^{\frac{2}{7}} = 1.302$ Coax

#### Velocity Pressure without ice, qz

(per TIA/EIA-222-F Section 2.3.3)

 $qz_{mast} := 0.00256 \cdot Kz_{mast} \cdot V^2 = 23.627$ Mast

 $qz_{att} := 0.00256 \cdot Kz_{att} \cdot V^2 = 24.478$ AT&T

 $qz_{mnt} := 0.00256 \cdot Kz_{mnt} \cdot V^2 = 24.478$ Mount

 $qz_{coax} := 0.00256 \cdot Kz_{coax} \cdot V^2 = 24.073$ Coax

#### Velocity Pressure with ice, qzICE

(per TIA/EIA-222-F Section 2.3.3)

 $qzICE_{mast} := 0.00256 \cdot Kz_{mast} \cdot V_i^2 = 17.908$ Mast

 $qzICE_{att} := 0.00256 \cdot Kz_{att} \cdot V_i^2 = 18.553$ AT&T

 $qzICE_{mnt} := 0.00256 \cdot Kz_{mnt} \cdot V_i^2 = 18.553$ Mount

 $qzICE_{coax} := 0.00256 \cdot Kz_{coax} \cdot V_i^2 = 18.245$ Coax

#### TIA/EIA Common Factors:

Gust Response Factor = (User Input per TIA/EIA-222-F Section 2.3.4)  $G_{H} := 1.69$ 

Radial Ice Thickness = Ir := 0.50(User Input per TIA/EIA-222-F Section 2.3.1)

Radial Ice Density = Id := 56.00(User Input) pcf



 Subject:

Mast Shape =

Load Analysis of PCS Mast and AT&T

Equipment on CL&P Tower # 783

Location: Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 3: 8/25/14 Job No. 13305.000

Development of Wind & Ice Load on PCS Mast

(per TIA/EIA-222-F-1996 Criteria)

Mast Data: (HSS12.5"x0.625")

Round (User Input)

Mast Diameter = D<sub>mast</sub> := 12.5 in (User Input)

Mast Length = L<sub>mast</sub> := 13.5 ft (User Input)

Mast Thickness = t<sub>mast</sub> := 0.625 in (User Input)

Mast As pect Ratio =  $Ar_{mast} = \frac{12L_{mast}}{D_{mast}} = 13.0$ 

 $\mbox{Mast Force Coefficient =} \qquad \qquad \mbox{Ca}_{\mbox{mast}} = 0.93 \qquad \qquad (\mbox{per TIA/EIA-222-F Table 3})$ 

Wind Load (without ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Mast Projected Surface Area = A<sub>ma</sub>

 $A_{mast} := \frac{D_{mast}}{12} = 1.042$  sf/ft

(User Input)

Total Mast Wind Force =

qz<sub>mast</sub>·G<sub>H</sub>·Ca<sub>mast</sub>·A<sub>mast</sub> = 39

plf BLC 5,7

Wind Load (with ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Mast Projected Surface Area w/ Ice =

 $AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot Ir\right)}{12} = 1.125$ 

Total Mast Wind Force w/ Ice =

qzICE<sub>mast</sub>·G<sub>H</sub>·Ca<sub>mast</sub>·AICE<sub>mast</sub> = 32

olf BLC 4,6

sf/ft

Gravity Loads (without ice)

Weight of the mast =

Self Weight (Computed internally by Risa-3D)

BLC 1

Gravity Loads (ice only)

Ice Area per Linear Foot =

 $Ai_{mast} := \frac{\pi}{4} \left[ \left( D_{mast} + Ir \cdot 2 \right)^2 - D_{mast}^2 \right] = 20.4$ 

sq in

Weight of Ice on Mast =

 $W_{ICEmast} := Id \cdot \frac{Ai_{mast}}{144} = 8$ 

plf BLC 3



Centered on Solutions www.centekeng.com Branford, CT 06405 F: (203) 488-8587 Subject:

Load Analysis of PCS Mast and AT&T

Equipment on CL&P Tower # 783

Location: Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 3: 8/25/14 Job No. 13305.000

#### Development of Wind & Ice Load on Antennas

#### Antenna Data:

Antenna Model =

Antenna Shape =

Antenna Height =

Antenna Width =

Antenna Thickness =

Antenna Weight =

Number of Antennas =

Antenna Aspect Ratio =

Antenna Force Coefficient =

(per TIA/EIA-222-F-1996 Criteria)

### CCI HPA-65R-BUU-H8

Flat (User Input)

 $L_{ant} := 92.4$ in (User Input)

 $W_{ant} = 14.8$ in (User Input)

 $T_{ant} = 7.4$ in (User Input)

 $WT_{ant} = 78$ (User Input)

 $N_{ant} = 6$ (User Input)

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 6.2$ 

 $Ca_{ant} = 1.4$ (per TIA/EIA-222-F-1996 Table 3)

#### Wind Load (without ice)

Assumes Maximum Possible Wind Pressure Applied to All Antennas Simultaneously

Surface Area for One Antenna =

Antenna Projected Surface Area =

 $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 9.5$ 

 $A_{ant} := SA_{ant} \cdot N_{ant} = 57$ sf

Total Antema Wind Force =

 $F_{ant} := qz_{att} \cdot G_H \cdot Ca_{ant} \cdot A_{ant} = 3300$ 

lbs **BLC 5,7** 

sf

Wind Load (with ice)

Assumes Maximum Possible Wind Pressure Applied to All Antennas Simultaneously

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ I ce =

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $SA_{ICEant} := \frac{\left(L_{ant} + 1\right) \cdot \left(W_{ant} + 1\right)}{144} = 10.2$ 

 $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 61.5$ 

Fiant := qzICEatt · GH·Caant · AICEant = 2699

sf

lbs

Total Antenna Wind Force w/ Ice =

Gravity Load (without ice)

Weight of All Antennas =

 $WT_{ant} \cdot N_{ant} = 468$ 

BLC 2

BLC 4,6

Gravity Loads (ice only) Volum e of Each Antenna =

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 1 \times 10^4$ 

cu in

Volum e of Ice on Each Antenna =

 $V_{ice} := (L_{ant} + 1)(W_{ant} + 1)(T_{ant} + 1) - V_{ant} = 2276$ 

cu in

lbs

Weight of Ice on Each Antenna =

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 74$ 

BLC 3 lbs

Weight of Ice on All Antennas =

W<sub>ICEant</sub>·N<sub>ant</sub> = 443



Centered on Solutions www.centekeng.com Branford, CT 06405 F: (203) 488-8587 Subject:

Load Analysis of PCS Mast and AT&T

Equipment on CL&P Tower # 783

Location: Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 3: 8/25/14 Job No. 13305.000

#### Development of Wind & Ice Load on Antennas

## Antenna Data:

Antenna Model =

Antenna Shape =

Antenna Height =

Antenna Width =

Antenna Thickness =

Antenna Weight =

Number of Antennas =

Antenna Aspect Ratio =

Antenna Force Coefficient =

(per TIA/EIA-222-F-1996 Criteria)

#### CCI OPA-65R-LCUU-H8

Flat (User Input)

 $L_{ant} := 92.7$ in (User Input)

 $W_{ant} = 14.4$ (User Input)

 $T_{ant} = 7.0$ in (User Input)

 $WT_{ant} := 100$ lbs (User Input)

 $N_{ant} := 3$ (User Input)

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 6.4$ 

 $Ca_{ant} = 1.4$ (per TIA/EIA-222-F-1996 Table 3)

#### Wind Load (without ice)

Assumes Maximum Possible Wind Pressure

Applied to All Antennas Simultaneously

Surface Area for One Antenna =

Antenna Projected Surface Area =

 $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 9.3$ 

 $A_{ant} := SA_{ant} \cdot N_{ant} = 27.8$ 

 $F_{ant} := qz_{att} \cdot G_H \cdot Ca_{ant} \cdot A_{ant} = 1611$ 

sf

Total Antenna Wind Force =

Wind Load (with ice) (per TIA/EIA-222-F-1996 Section 2.3.2)

Assumes Maximum Possible Wind Pressure Applied to All Antennas Simultaneously

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ I ce =

 $SA_{ICEant} := \frac{\left(L_{ant} + 1\right) \cdot \left(W_{ant} + 1\right)}{144} = 10$ 

A<sub>ICEant</sub> := SA<sub>ICEant</sub>·N<sub>ant</sub> = 30.1

Fiant := qzICE<sub>att</sub>·G<sub>H</sub>·Ca<sub>ant</sub>·A<sub>ICEant</sub> = 1320

sf

sf

lbs

lbs

Total Antenna Wind Force w/ Ice =

Gravity Load (without ice)

 $WT_{ant} \cdot N_{ant} = 300$ 

BLC 2

BLC 4,6

**BLC 5,7** 

Weight of All Antennas = Gravity Loads (ice only)

Volum e of Each Antenna =

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 9344$ 

cu in

Volum e of Ice on Each Antenna =

 $V_{ice} := (L_{ant} + 1)(W_{ant} + 1)(T_{ant} + 1) - V_{ant} = 2200$ 

cu in

lbs

Weight of Ice on Each Antenna =

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 71$ 

lbs BLC 3

Weight of Ice on All Antennas =

W<sub>ICEant</sub>·N<sub>ant</sub> = 214



Centered on Solutions www.centekeng.com Branford, CT 06405 F: (203) 488-8587 Subject:

Load Analysis of PCS Mast and AT&T

Equipment on CL&P Tower # 783

Location: Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 3: 8/25/14 Job No. 13305.000

## Development of Wind & Ice Load on TMAs

(per TIA/EIA-222-F-1996 Criteria)

TMA Data:

TMA Model = CCI BPDB7823VG12A

TMA Shape = (User Input)

TMA Height =  $L_{tma} := 14.25$ (User Input)

TMA Width =  $W_{tma} := 11.03$ (User Input)

 $T_{tma} := 4.11$ TMA Thickness = (User Input)

 $WT_{tma} := 30$ TMA Weight = lbs (User Input)

Number of TMAs =  $N_{tma} := 18$ (User Input)

 $Ar_{tma} := \frac{L_{tma}}{W_{tma}} = 1.3$ TMA Aspect Ratio =

 $Ca_{tma} = 1.4$ TMA Force Coefficient = (per TIA/EIA-222-F-1996 Table 3)

#### Wind Load (without ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Assumes Maximum Possible Wind Pressure Applied to ALL TMAs Simultaneously

> $SA_{tma} := \frac{L_{tma} \cdot W_{tma}}{144} = 1.1$ Surface Area for One TMA = sf

 $A_{tma} := SA_{tma} \cdot N_{tma} = 19.6$ TMA Projected Surface Area = sf

Total TMA Wind Force =

**BLC 5,7**  $F_{tma} := qz_{att} \cdot G_H \cdot Ca_{tma} \cdot A_{tma} = 1138$ lbs

sf

sf

lbs

BLC 4,6

(per TIA/EIA-222-F-1996 Section 2.3.2) Wind Load (with ice)

Assumes Maximum Possible Wind Pressure Applied to ALL TMAs Simultaneously

Surface Area for One TMA w/ Ice =

TMA Projected Surface Area w/ Ice =  $A_{ICEtma} := SA_{ICEtma} \cdot N_{tma} = 22.9$ 

Total TMA Wind Force w/ Ice = Fi<sub>tma</sub> := qzICE<sub>att</sub>·G<sub>H</sub>·Ca<sub>tma</sub>·A<sub>ICEtma</sub> = 1007

Gravity Load (without ice)

Weight of All TMAs =  $WT_{tma} \cdot N_{tma} = 540$ BLC 2 lbs

 $SA_{ICEtma} := \frac{\left(L_{tma} + 1\right) \cdot \left(W_{tma} + 1\right)}{144} = 1.3$ 

Gravity Loads (ice only)

Volum e of Each TMA =  $V_{tma} := L_{tma} \cdot W_{tma} \cdot T_{tma} = 646$ cu in

 $V_{ice} := (L_{tma} + 1)(W_{tma} + 1) \cdot (T_{tma} + 1) - V_{tma} = 291$ Volume of Ice on Each TMA = cu in

 $W_{ICEtma} := \frac{V_{ice}}{1728} \cdot Id = 9$ Weight of Ice on Each TMA = lbs

Weight of Ice on All TMAs = lbs BLC 3  $W_{ICEtma} \cdot N_{tma} = 170$ 



 Subject:

Load Analysis of PCS Mast and AT&T

Equipment on CL&P Tower # 783

Location: Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

BLC 5,7

BLC 2

Rev. 3: 8/25/14 Job No. 13305.000

Development of Wind & Ice Load on Antenna Mounts

(per TIA/EIA-222-F-1996 Criteria)

Mount Data:

Mount Type: Site Pro Ultra Low Profile Monopole Mount ULP12

Mount Shape = Flat (User Input)

Mount Area =  $CaA_{mnt} := 27$  sq ft (User Input)

Mount Area w/ Ice = CaA<sub>ICEmnt</sub> := 33.8 sq ft (User Input)

Mount Weight = WT<sub>mnt</sub> := 1405 lbs (User Input)

Wind Load (without ice)

Wind Load (with ice)

Total Mount Wind Force =

(per TIA/EIA-222-F-1996 Section 2.3.2)

Total Mount Wind Force =  $F_{mnt} := qz_{mnt} \cdot G_H \cdot CaA_{mnt} = 1117$ 

(per TIA/EIA-222-F-1996 Section 2.3.2)

Fi<sub>mnt</sub> := qzICE<sub>mnt</sub>·G<sub>H</sub>·CaA<sub>ICEmnt</sub> = 1060 lbs **BLC 4,6** 

Gravity Loads (without ice) (per TIA/EIA-222-F-1996)

Weight of All Mounts = WT<sub>mnt</sub> = 1405

Gravity Loads (ice only) (per TIA/EIA-222-F-1996)

Weight of Ice on All Mounts = WT<sub>ICEmnt</sub> - WT<sub>mnt</sub> = 355



Branford, CT 06405

Subject:

Load Analysis of PCS Mast and AT&T

Equipment on CL&P Tower # 783

Meriden, CT

Location:

Prepared by: T.J.L. Checked by: C.F.C.

sf/ft

BLC 4,6

Rev. 3: 8/25/14 Job No. 13305.000

**Development of Wind & Ice Load on Coax Cables** 

F: (203) 488-8587

per TIA/EIA-222-F-96 Criteria

Coax Cable Data:

Coax Type = HELIAX 1-5/8"

Shape = Round (User Input)

Coax Outside Diameter =  $D_{coax} = 1.98$  in (User Input)

Coax Cable Length =  $L_{coax} := 10$  ft (User Input)

Weight of Coax per foot =  $Wt_{coax} := 1.04$  plf (User Input)

Total Number of Coax =  $N_{coax} := 36$  (User Input)

No. of Coax Projecting Outside Face of PCS Mast = NP<sub>coax</sub> := 8 (User Input)

Coax aspect ratio,  $Ar_{\text{COax}} \coloneqq \frac{\left(L_{\text{COax}} \cdot 12\right)}{D_{\text{COax}}} = 60.6$ 

Coax Cable Force Factor Coefficient =  $Ca_{coax} = 1.2$  TIA/EIA-222-F-96 Table 3

Wind Load (without ice)

Coax projected surface area =  $A_{coax} := \frac{NP_{coax} \cdot D_{coax}}{12} = 1.3$ 

Total Coax Wind Force =  $F_{coax} = qz_{coax} \cdot G_H \cdot Ca_{coax} \cdot A_{coax} = 64$  plf **BLC 5.7** 

per TIA/EIA-222-F-96 Section 2.3.2

Wind Load (with ice) per TIA/EIA-222-F-96 Section 2.3.2

Coax projected surface area w/ Ice =  $AICE_{coax} := \frac{NP_{coax} \cdot \left(D_{coax} + 2 \cdot Ir\right)}{12} = 2$  sf/ft

Total Coax Wind Force w/ Ice = Fi<sub>coax</sub> := qzICE<sub>coax</sub> ·G<sub>H</sub>·Ca<sub>coax</sub> ·AICE<sub>coax</sub> = 74

Gravity Loads (without ice)

Weight of all cables w/o ice WT<sub>coax</sub>:= Wt<sub>coax</sub>·N<sub>coax</sub> = 37 plf BLC 2

Gravity Loads (ice only)

Ice Area per Linear Foot =  $Ai_{coax} := \frac{\pi}{4} \left[ \left( D_{coax} + 2 \cdot Ir \right)^2 - D_{coax}^2 \right] = 3.9$  sq in

Ice Weight All Coax per foot =  $WTi_{coax} := Id \cdot \left( N_{coax} \cdot \frac{Ai_{coax}}{144} \right) = 55$  plf **BLC 3** 



Centered on Solutions www.centekeng.com 63.3 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587 Subject:

Load Analysis of PCS Mast and AT&T

Equipment on CL&P Tower # 783

Meriden, CT Location:

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 3: 8/25/14 Job No. 13305.000

Development of Wind & Ice Load on Brace Member

(per TIA/EIA-222-F-1996 Criteria)

Member Data:

HSS6x6x3/8

Antenna Shape =

Flat

(User Input)

Height =

Length =

 $H_{mem} := 6$  $W_{mem} := 6$ 

 $L_{mem} := 84$ 

(User Input)

Width =

(User Input) (User Input)

Member Aspect Ratio =

 $Ar_{mem} := \frac{H_{mem}}{L_{mem}} = 0.1$ 

Member Force Coefficient =

(per TIA/EIA-222-F-1996 Table 3)  $Ca_{mem} = 1.4$ 

Wind Load (without ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Member Projected Surface Area =

 $A_{mem} := \frac{H_{mem}}{12} = 0.5$ 

plf

Total Member Wind Force =

 $F_{mem} := qz_{mast} \cdot G_H \cdot Ca_{mem} \cdot A_{mem} = 28$ 

**BLC 5,7** lbs

Wind Load (with ice)

Member Projected Surface Area w/ I ce =

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $A_{ICEmem} := \frac{\left(H_{mem} + 2 \cdot Ir\right)}{12} = 0.58$ 

plf

Total Member Wind Force w/ Ice =

 $Fi_{mem} := qzICE_{mast}G_HCa_{mem}A_{ICEmem} = 25$ 

BLC 4,6 lbs

Gravity Load (without ice)

Weight of Member =

Self Weight

BLC 1

Gravity Loads (ice only)

Ice Area per Linear foot =

 $Ai_{mem} := (W_{mem} + 2 \cdot Ir) \cdot (H_{mem} + 2 \cdot Ir) - W_{mem} \cdot H_{mem} = 13$ 

Weight of Ice on Member =

 $W_{ICE.mem} := Id. \frac{Ai_{mem}}{144} = 5$ 

BLC 3

| CENTEK engineering, INC. Consulting Engineers | Subject:             | Analysis of TIA/EIA Win<br>Antenna Frame Only | d and Ice Loads f  | or Desig | n of      |  |  |
|-----------------------------------------------|----------------------|-----------------------------------------------|--------------------|----------|-----------|--|--|
| 63-2 North Branford Road                      | Tabulated Load Cases |                                               |                    |          |           |  |  |
| Branford, CT 06405                            | Location:            | Meriden, CT                                   |                    |          |           |  |  |
| Ph. 203-488-0580 / Fax. 203-488-8587          | Date: 1/2/14         | Prepared by: T.J.L.                           | Checked by: C.F.C. | Job No.  | 13305.000 |  |  |
|                                               |                      |                                               |                    |          |           |  |  |
| Load Case                                     |                      | Description                                   |                    |          |           |  |  |
| 1                                             | Se                   | If Weight (Antenna Frame                      | )                  |          |           |  |  |
| 2                                             | \                    | Weight of Appurtenances                       |                    |          |           |  |  |
| 3                                             | Weight               | of Ice Only on Antenna Fi                     | rame               |          |           |  |  |
| 4                                             | x-direction TIA      | VEIA Wind with Ice on Ant                     | enna Frame         |          |           |  |  |
| 5                                             | x-direction          | TIA/EIA Wind on Antenna                       | a Frame            |          |           |  |  |
| 6                                             | z-direction TIA      | VEIA Wind with Ice on Ant                     | enna Frame         |          |           |  |  |
| 7                                             | z-direction          | TIA/EIA Wind on Antenna                       | a Frame            |          |           |  |  |
| Footnotes:                                    |                      |                                               |                    |          |           |  |  |

|                  | CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road | Subject:     | -      | sis of TIA<br>Combinat |          |        | d Ice              | Loads  | for De | sign of | PCS | Structu           | re On | ly     |
|------------------|------------------------------------------------------------------------|--------------|--------|------------------------|----------|--------|--------------------|--------|--------|---------|-----|-------------------|-------|--------|
|                  | Branford, CT 06405                                                     | Location:    | Meride | n, CT                  |          |        |                    |        |        |         |     |                   |       |        |
|                  | Ph. 203-488-0580 / Fax. 203-488-8587                                   | Date: 1/2/14 |        | Prepared               | oy: T.J. | L.     | Checked by: C.F.C. |        |        |         | Jo  | Job No. 13305.000 |       |        |
|                  |                                                                        | Envelope     | Wind   |                        |          |        |                    |        |        |         |     |                   |       |        |
| Load Combination | Description                                                            | Soultion     | Factor | P-Delta                | BLC      | Factor | BLC                | Factor | BLC    | Factor  | BLC | Factor            | BLC   | Factor |
| 1                | x-direction TIA/EIA Wind + Ice on PCS Structure                        |              | 1      |                        | 1        | 1      | 2                  | 1      | 3      | 1       | 4   | 1                 |       |        |
| 2                | x-direction TIA/EIA Wind on PCS Structure                              |              | 1      |                        | 1        | 1      | 2                  | 1      | 5      | 1       |     |                   |       |        |
| 3                | z-direction TIA/EIA Wind + Ice on PCS Structure                        |              | 1      |                        | 1        | 1      | 2                  | 1      | 3      | 1       | 6   | 1                 |       |        |
| 4                | z-direction TIA/EIA Wind on PCS Structure                              |              | 1      |                        | 1        | 1      | 2                  | 1      | 7      | 1       |     |                   |       |        |
|                  | Footnotes:                                                             |              |        |                        |          |        |                    |        |        |         |     |                   |       |        |
|                  | (1) BLC = Basic Load Case                                              |              |        |                        |          |        |                    |        |        |         |     |                   |       |        |
| I                | (2) PCS Structure includes: PCS Mast and Appurtenance                  | es           |        |                        |          |        |                    |        |        |         |     |                   |       |        |



Company :
Designer :
Job Number :
Model Name :

: CENTEK Engineering, INC.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_\_

## Global

| Display Sections for Member Calcs         | 5                      |
|-------------------------------------------|------------------------|
| Max Internal Sections for Member Calcs    | 97                     |
| Include Shear Deformation?                | Yes                    |
| Include Warping?                          | Yes                    |
| Trans Load Btwn Intersecting Wood Wall?   | Yes                    |
| Increase Nailing Capacity for Wind?       | Yes                    |
| Area Load Mesh (in^2)                     | 144                    |
| Merge Tolerance (in)                      | .12                    |
| P-Delta Analysis Tolerance                | 0.50%                  |
| Include P-Delta for Walls?                | Yes                    |
| Automaticly Iterate Stiffness for Walls?  | No                     |
| Maximum Iteration Number for Wall Stiffne | sŝ                     |
| Gravity Acceleration (ft/sec^2)           | 32.2                   |
| Wall Mesh Size (in)                       | 12                     |
| Eigensolution Convergence Tol. (1.E-)     | 4                      |
| Vertical Axis                             | Υ                      |
| Global Member Orientation Plane           | XZ                     |
| Static Solver                             | Sparse Accelerated     |
| Dynamic Solver                            | Accelerated Solver     |
|                                           |                        |
| Hat Dallad Ctaal Cada                     | ALCC 444-(200 40), ACD |

| Hot Rolled Steel Code  | AISC 14th(360-10): ASD     |
|------------------------|----------------------------|
| Adjust Stiffness?      | Yes(Iterative)             |
| RISAConnection Code    | AISC 14th(360-10): ASD     |
| Cold Formed Steel Code | AISI 1999: ASD             |
| Wood Code              | AF&PA NDS-97: ASD          |
| Wood Temperature       | < 100F                     |
| Concrete Code          | ACI 318-02                 |
| Masonry Code           | ACI 530-05: ASD            |
| Aluminum Code          | AA ADM1-05: ASD - Building |

| Number of Shear Regions       | 4                  |
|-------------------------------|--------------------|
| Region Spacing Increment (in) | 4                  |
| Biaxial Column Method         | PCA Load Contour   |
| Parme Beta Factor (PCA)       | .65                |
| Concrete Stress Block         | Rectangular        |
| Use Cracked Sections?         | Yes                |
| Use Cracked Sections Slab?    | Yes                |
| Bad Framing Warnings?         | No                 |
| Unused Force Warnings?        | Yes                |
| Min 1 Bar Diam. Spacing?      | No                 |
| Concrete Rebar Set            | REBAR_SET_ASTMA615 |
| Min % Steel for Column        | 1                  |
| Max % Steel for Column        | 8                  |



: CENTEK Engineering, INC.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_

# Global, Continued

| Seismic Code                | UBC 1997    |
|-----------------------------|-------------|
| Seismic Base Elevation (ft) | Not Entered |
| Add Base Weight?            | No          |
| Ct Z                        | .035        |
| Ct X                        | .035        |
| T Z (sec)                   | Not Entered |
| T X (sec)                   | Not Entered |
| RZ                          | 8.5         |
| RX                          | 8.5         |
| Ca                          | .36         |
| Cv                          | .54         |
| Nv                          | 1           |
| Occupancy Category          | 4           |
| Seismic Zone                | 3           |
| Seismic Detailing Code      | ASCE 7-05   |
| Om Z                        | 1           |
| Om X                        | 1           |
| Rho Z                       | 1           |
| Rho X                       | 1           |
|                             |             |

| Footing Overturning Safety Factor | 1.5    |
|-----------------------------------|--------|
| Check Concrete Bearing            | No     |
| Footing Concrete Weight (k/ft^3)  | 0      |
| Footing Concrete f'c (ksi)        | 3      |
| Footing Concrete Ec (ksi)         | 4000   |
| Lamda                             | 1      |
| Footing Steel fy (ksi)            | 60     |
| Minimum Steel                     | 0.0018 |
| Maximum Steel                     | 0.0075 |
| Footing Top Bar                   | #3     |
| Footing Top Bar Cover (in)        | 3.5    |
| Footing Bottom Bar                | #3     |
| Footing Bottom Bar Cover (in)     | 3.5    |
| Pedestal Bar                      | #3     |
| Pedestal Bar Cover (in)           | 1.5    |
| Pedestal Ties                     | #3     |

# **Hot Rolled Steel Properties**

|   | Label      | E [ksi] | G [ksi] | Nu | Therm (\1 | Density[k/ft^3] | Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|---|------------|---------|---------|----|-----------|-----------------|------------|-----|---------|-----|
| 1 | A36 Gr.36  | 29000   | 11154   | .3 | .65       | .49             | 36         | 1.5 | 58      | 1.2 |
| 2 | A572 Gr.50 | 29000   | 11154   | .3 | .65       | .49             | 50         | 1.1 | 58      | 1.2 |
| 3 | A992       | 29000   | 11154   | .3 | .65       | .49             | 50         | 1.1 | 58      | 1.2 |
| 4 | A500 Gr.42 | 29000   | 11154   | .3 | .65       | .49             | 42         | 1.3 | 58      | 1.1 |
| 5 | A500 Gr.46 | 29000   | 11154   | .3 | .65       | .49             | 46         | 1.2 | 58      | 1.1 |
| 6 | A53 Gr. B  | 29000   | 11154   | .3 | .65       | .49             | 35         | 1.5 | 58      | 1.2 |



: CENTEK Engineering, INC. : til. cfc

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_\_

# Hot Rolled Steel Design Parameters

|    | Label | Shape |       | Lbyy[ft] | Lbzz[ft] | Lcomp t | Lcomp bL-torqu | ı Kyy | Kzz | Cb | Function |
|----|-------|-------|-------|----------|----------|---------|----------------|-------|-----|----|----------|
| 1  | M1    | Mast  | 13.25 | Segment  | Segment  |         |                |       |     |    | Lateral  |
| 2  | M2    | Brace | 18.5  |          |          |         |                |       |     |    | Lateral  |
| 3  | М3    | Brace | 18.5  |          |          |         |                |       |     |    | Lateral  |
| 4  | M4    | Brace | 18.5  |          |          |         |                |       |     |    | Lateral  |
| 5  | M5    | Brace | 18.5  |          |          |         |                |       |     |    | Lateral  |
| 6  | M6    | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 7  | M7    | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 8  | M8    | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 9  | M9    | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 10 | M10   | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 11 | M11   | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 12 | M12   | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 13 | M13   | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 14 | M14   | Brace | 5.5   | Segment  | Segment  |         |                |       |     |    | Lateral  |
| 15 | M15   | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 16 | M16   | Brace | 5.5   | Segment  | Segment  |         |                |       |     |    | Lateral  |
| 17 | M17   | Brace | 5.5   |          |          |         |                |       |     |    | Lateral  |
| 18 | M18   | Brace | 5.5   | Segment  | Segment  |         |                |       |     |    | Lateral  |
| 19 | M19   | Brace | 5.5   | Segment  | Segment  |         |                |       |     |    | Lateral  |
| 20 | M20   | Brace | 1.5   |          |          |         |                |       |     |    | Lateral  |
| 21 | M21   | Brace | 1.5   |          |          |         |                |       |     |    | Lateral  |
| 22 | M24   | Brace | .75   |          |          |         |                |       |     |    | Lateral  |
| 23 | M25   | Brace | .75   |          |          |         |                |       |     |    | Lateral  |
| 24 | M26   | Brace | .75   |          |          |         |                |       |     |    | Lateral  |
| 25 | M27   | Brace | .75   |          |          |         |                |       |     |    | Lateral  |
| 26 | M28   | Brace | .75   |          |          |         |                |       |     |    | Lateral  |
| 27 | M29   | Brace | .75   |          |          |         |                |       |     |    | Lateral  |
| 28 | M30   | Brace | .75   |          |          |         |                |       |     |    | Lateral  |
| 29 | M31   | Brace | .75   |          |          |         |                |       |     |    | Lateral  |

## **Hot Rolled Steel Section Sets**

|   | Label | Shape         | Type | Design List | Material   | Design Ru | A [in2] | lyy [in4] | Izz [in4] | J [in4] |
|---|-------|---------------|------|-------------|------------|-----------|---------|-----------|-----------|---------|
| 1 | Mast  | HSS12.5X0.625 | Beam | Pipe        | A500 Gr.42 | Typical   | 21.8    | 387       | 387       | 774     |
| 2 | Brace | HSS6x6x6      | Beam | Tube        | A500 Gr.46 | Typical   | 7.58    | 39.5      | 39.5      | 64.6    |

# **Member Primary Data**

|    | Label | I Joint | J Joint | K Joint | Rotate(d | Section/Shape | Type | Design List | Material   | Design R |
|----|-------|---------|---------|---------|----------|---------------|------|-------------|------------|----------|
| 1  | M1    | N1      | N2      |         |          | Mast          | Beam | Pipe        | A500 Gr.42 | Typical  |
| 2  | M2    | N3      | N11     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 3  | М3    | N4      | N12     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 4  | M4    | N5      | N13     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 5  | M5    | N6      | N14     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 6  | M6    | N3      | N4      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 7  | M7    | N4      | N6      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 8  | M8    | N6      | N5      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 9  | M9    | N5      | N3      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 10 | M10   | N7      | N8      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 11 | M11   | N8      | N10     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 12 | M12   | N10     | N9      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |



: CENTEK Engineering, INC. : tjl, cfc

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_\_

# **Member Primary Data (Continued)**

|    | Label | I Joint | J Joint | K Joint | Rotate(d | Section/Shape | Type | Design List | Material   | Design R |
|----|-------|---------|---------|---------|----------|---------------|------|-------------|------------|----------|
| 13 | M13   | N9      | N7      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 14 | M14   | N11     | N12     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 15 | M15   | N12     | N14     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 16 | M16   | N14     | N13     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 17 | M17   | N13     | N11     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 18 | M18   | N18     | N16     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 19 | M19   | N15     | N17     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 20 | M20   | N20     | N22     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 21 | M21   | N19     | N21     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 22 | M22   | N20     | N21     |         |          | RIGID         | None | None        | RIGID      | Typical  |
| 23 | M23   | N19     | N22     |         |          | RIGID         | None | None        | RIGID      | Typical  |
| 24 | M24   | N23     | N27     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 25 | M25   | N24     | N28     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 26 | M26   | N25     | N29     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 27 | M27   | N26     | N30     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 28 | M28   | N31     | N35     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 29 | M29   | N32     | N36     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 30 | M30   | N33     | N37     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 31 | M31   | N34     | N38     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |

# **Joint Coordinates and Temperatures**

|    | Label | X [ft] | Y [ft] | Z [ft] | Temp [F] | Detach From Dia |
|----|-------|--------|--------|--------|----------|-----------------|
| 1  | N1    | 0      | 18.5   | 0      | 0        |                 |
| 2  | N2    | 0      | 31.75  | 0      | 0        |                 |
| 3  | N3    | 2.75   | 0      | 2.75   | 0        |                 |
| 4  | N4    | 2.75   | 0      | -2.75  | 0        |                 |
| 5  | N5    | -2.75  | 0      | 2.75   | 0        |                 |
| 6  | N6    | -2.75  | 0      | -2.75  | 0        |                 |
| 7  | N7    | 2.75   | 11     | 2.75   | 0        |                 |
| 8  | N8    | 2.75   | 11     | -2.75  | 0        |                 |
| 9  | N9    | -2.75  | 11     | 2.75   | 0        |                 |
| 10 | N10   | -2.75  | 11     | -2.75  | 0        |                 |
| 11 | N11   | 2.75   | 18.5   | 2.75   | 0        |                 |
| 12 | N12   | 2.75   | 18.5   | -2.75  | 0        |                 |
| 13 | N13   | -2.75  | 18.5   | 2.75   | 0        |                 |
| 14 | N14   | -2.75  | 18.5   | -2.75  | 0        |                 |
| 15 | N15   | 2.75   | 18.5   | .75    | 0        |                 |
| 16 | N16   | 2.75   | 18.5   | 75     | 0        |                 |
| 17 | N17   | -2.75  | 18.5   | .75    | 0        |                 |
| 18 | N18   | -2.75  | 18.5   | 75     | 0        |                 |
| 19 | N19   | .75    | 18.5   | .75    | 0        |                 |
| 20 | N20   | 75     | 18.5   | .75    | 0        |                 |
| 21 | N21   | .75    | 18.5   | 75     | 0        |                 |
| 22 | N22   | 75     | 18.5   | 75     | 0        |                 |
| 23 | N23   | 2.75   | 0      | 1.833  | 0        |                 |
| 24 | N24   | 2.75   | 0      | -1.833 | 0        |                 |
| 25 | N25   | -2.75  | 0      | 1.833  | 0        |                 |
| 26 | N26   | -2.75  | 0      | -1.833 | 0        |                 |
| 27 | N27   | 2      | 0      | 1.833  | 0        |                 |
| 28 | N28   | 2      | 0      | -1.833 | 0        |                 |



Model Name

: CENTEK Engineering, INC. : tjl, cfc

: 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_

## Joint Coordinates and Temperatures (Continued)

|    | Label | X [ft] | Y [ft] | Z [ft] | Temp [F] | Detach From Dia |
|----|-------|--------|--------|--------|----------|-----------------|
| 29 | N29   | -2     | 0      | 1.833  | 0        |                 |
| 30 | N30   | -2     | 0      | -1.833 | 0        |                 |
| 31 | N31   | 2.75   | 11     | 1.833  | 0        |                 |
| 32 | N32   | 2.75   | 11     | -1.833 | 0        |                 |
| 33 | N33   | -2.75  | 11     | 1.833  | 0        |                 |
| 34 | N34   | -2.75  | 11     | -1.833 | 0        |                 |
| 35 | N35   | 2      | 11     | 1.833  | 0        |                 |
| 36 | N36   | 2      | 11     | -1.833 | 0        |                 |
| 37 | N37   | -2     | 11     | 1.833  | 0        |                 |
| 38 | N38   | -2     | 11     | -1.833 | 0        |                 |

# Joint Boundary Conditions

|    | Joint Label | X [k/in] | Y [k/in] | Z [k/in] | X Rot.[k-ft/rad] | Y Rot.[k-ft/rad] | Z Rot.[k-ft/rad] | Footing |
|----|-------------|----------|----------|----------|------------------|------------------|------------------|---------|
| 1  | N3          |          |          |          |                  | •                |                  |         |
| 2  | N4          |          |          |          |                  |                  |                  |         |
| 3  | N5          |          |          |          |                  |                  |                  |         |
| 4  | N6          |          |          |          |                  |                  |                  |         |
| 5  | N7          |          |          |          |                  |                  |                  |         |
| 6  | N8          |          |          |          |                  |                  |                  |         |
| 7  | N9          |          |          |          |                  |                  |                  |         |
| 8  | N10         |          |          |          |                  |                  |                  |         |
| 9  | N31         |          |          |          |                  |                  |                  |         |
| 10 | N32         |          |          |          |                  |                  |                  |         |
| 11 | N33         |          |          |          |                  |                  |                  |         |
| 12 | N34         |          |          |          |                  |                  |                  |         |
| 13 | N35         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 14 | N36         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 15 | N37         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 16 | N38         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 17 | N23         |          |          |          |                  |                  |                  |         |
| 18 | N24         |          |          |          |                  |                  |                  |         |
| 19 | N25         |          |          |          |                  |                  |                  |         |
| 20 | N26         |          |          |          |                  |                  |                  |         |
| 21 | N27         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 22 | N28         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 23 | N29         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 24 | N30         | Reaction | Reaction | Reaction |                  |                  |                  |         |

# Member Point Loads (BLC 2 : Weight of Appurtenances)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | Υ         | 468               | 9.25           |
| 2 | M1           | Υ         | 3                 | 9.25           |
| 3 | M1           | Υ         | 54                | 9.25           |
| 4 | M1           | Y         | -1.405            | 9.25           |

# Member Point Loads (BLC 3: Weight of Ice Only on Antenna Fr)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | Υ         | 443               | 9.25           |



Model Name

: CENTEK Engineering, INC.: tjl, cfc

: 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_

## Member Point Loads (BLC 3: Weight of Ice Only on Antenna Fr) (Continued)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 2 | M1           | Υ         | 214               | 9.25           |
| 3 | M1           | Υ         | 17                | 9.25           |
| 4 | M1           | Υ         | 355               | 9.25           |

## Member Point Loads (BLC 4 : x-dir TIA/EIA Wind with Ice on A)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | X         | 2.699             | 9.25           |
| 2 | M1           | X         | 1.32              | 9.25           |
| 3 | M1           | X         | 1.007             | 9.25           |
| 4 | M1           | X         | 1.06              | 9.25           |

## Member Point Loads (BLC 5 : x-dir TIA/EIA Wind on Antenna Fr)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | X         | 3.3               | 9.25           |
| 2 | M1           | X         | 1.611             | 9.25           |
| 3 | M1           | X         | 1.138             | 9.25           |
| 4 | M1           | X         | 1.117             | 9.25           |

## Member Point Loads (BLC 6 : z-dir TIA/EIA Wind with Ice on A)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | Z         | 2.699             | 9.25           |
| 2 | M1           | Z         | 1.32              | 9.25           |
| 3 | M1           | Z         | 1.007             | 9.25           |
| 4 | M1           | 7         | 1.06              | 9.25           |

## Member Point Loads (BLC 7: z-dir TIA/EIA Wind on Antenna Fr)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | Z         | 3.3               | 9.25           |
| 2 | M1           | Z         | 1.611             | 9.25           |
| 3 | M1           | Z         | 1.138             | 9.25           |
| 4 | M1           | Z         | 1.117             | 9.25           |

# Joint Loads and Enforced Displacements

| Joint Label | L,D,M            | Direction | Magnitude[(k,k-ft), (in,rad), (k*s^2/f |
|-------------|------------------|-----------|----------------------------------------|
|             | No Data to Print |           |                                        |

## Member Distributed Loads (BLC 2 : Weight of Appurtenances)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1 | M1           | Υ         | 037                     | 037                   | 0                    | 0                  |
| 2 | M4           | Υ         | 019                     | 019                   | 11                   | 18                 |
| 3 | M2           | Υ         | 019                     | 019                   | 11                   | 18                 |

## Member Distributed Loads (BLC 3: Weight of Ice Only on Antenna Fr)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1 | M1           | Υ         | 008                     | 008                   | 0                    | 0                  |
| 2 | M1           | Υ         | 055                     | 055                   | 0                    | 0                  |



Model Name

: CENTEK Engineering, INC.: tjl, cfc

: 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_

## Member Distributed Loads (BLC 3: Weight of Ice Only on Antenna Fr) (Continued)

|    | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 3  | M4           | Υ         | 028                     | 028                   | 11                   | 18                 |
| 4  | M2           | Υ         | 028                     | 028                   | 11                   | 18                 |
| 5  | M16          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 6  | M15          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 7  | M18          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 8  | M19          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 9  | M20          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 10 | M21          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 11 | M14          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 12 | M17          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 13 | M4           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 14 | M5           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 15 | M3           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 16 | M2           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 17 | M13          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 18 | M12          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 19 | M11          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 20 | M10          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 21 | M7           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 22 | M6           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 23 | M9           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 24 | M8           | Υ         | 005                     | 005                   | 0                    | 0                  |

# Member Distributed Loads (BLC 4 : x-dir TIA/EIA Wind with Ice on A)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1 | M1           | X         | .032                    | .032                  | 0                    | 0                  |
| 2 | M1           | X         | .074                    | .074                  | 0                    | 0                  |
| 3 | M4           | X         | .037                    | .037                  | 11                   | 18                 |
| 4 | M2           | X         | .037                    | .037                  | 11                   | 18                 |
| 5 | M5           | X         | .025                    | .025                  | 0                    | 0                  |
| 6 | M4           | X         | .025                    | .025                  | 0                    | 0                  |
| 7 | M16          | X         | .025                    | .025                  | 0                    | 0                  |
| 8 | M12          | X         | .025                    | .025                  | 0                    | 0                  |
| 9 | M8           | X         | .025                    | .025                  | 0                    | 0                  |

## Member Distributed Loads (BLC 5 : x-dir TIA/EIA Wind on Antenna Fr)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1 | M1           | X         | .039                    | .039                  | 0                    | 0                  |
| 2 | M1           | X         | .064                    | .064                  | 0                    | 0                  |
| 3 | M4           | X         | .032                    | .032                  | 11                   | 18                 |
| 4 | M2           | Χ         | .032                    | .032                  | 11                   | 18                 |
| 5 | M5           | Χ         | .028                    | .028                  | 0                    | 0                  |
| 6 | M4           | X         | .028                    | .028                  | 0                    | 0                  |
| 7 | M16          | Χ         | .028                    | .028                  | 0                    | 0                  |
| 8 | M12          | X         | .028                    | .028                  | 0                    | 0                  |
| 9 | M8           | X         | .028                    | .028                  | 0                    | 0                  |

## Member Distributed Loads (BLC 6 : z-dir TIA/EIA Wind with Ice on A)

| 1 M1 Z .032 .032 | 0 |
|------------------|---|



: CENTEK Engineering, INC.: tjl, cfc

: 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_

## Member Distributed Loads (BLC 6 : z-dir TIA/EIA Wind with Ice on A) (Continued)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 2 | M1           | Z         | .074                    | .074                  | 0                    | 0                  |
| 3 | M4           | Z         | .074                    | .074                  | 11                   | 18                 |
| 4 | M2           | Z         | .074                    | .074                  | 11                   | 18                 |
| 5 | M5           | Z         | .025                    | .025                  | 0                    | 0                  |
| 6 | M3           | Z         | .025                    | .025                  | 0                    | 0                  |
| 7 | M15          | Z         | .025                    | .025                  | 0                    | 0                  |
| 8 | M11          | Z         | .025                    | .025                  | 0                    | 0                  |
| 9 | M7           | Z         | .025                    | .025                  | 0                    | 0                  |

# Member Distributed Loads (BLC 7 : z-dir TIA/EIA Wind on Antenna Fr)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1 | M1           | Z         | .039                    | .039                  | 0                    | 0                  |
| 2 | M1           | Z         | .064                    | .064                  | 0                    | 0                  |
| 3 | M4           | Z         | .064                    | .064                  | 11                   | 18                 |
| 4 | M2           | Z         | .064                    | .064                  | 11                   | 18                 |
| 5 | M5           | Z         | .028                    | .028                  | 0                    | 0                  |
| 6 | M3           | Z         | .028                    | .028                  | 0                    | 0                  |
| 7 | M15          | Z         | .028                    | .028                  | 0                    | 0                  |
| 8 | M11          | Z         | .028                    | .028                  | 0                    | 0                  |
| 9 | M7           | Z         | .028                    | .028                  | 0                    | 0                  |

## **Basic Load Cases**

|   | BLC Description                  | Category | X Gra | . Y Gra | Z Grav | . Joint | Point | Distrib | .Area( | Surfac |
|---|----------------------------------|----------|-------|---------|--------|---------|-------|---------|--------|--------|
| 1 | Self Weight (Antenna Frame)      | None     |       | -1      |        |         |       |         |        |        |
| 2 | Weight of Appurtenances          | None     |       |         |        |         | 4     | 3       |        |        |
| 3 | Weight of Ice Only on Antenna Fr | None     |       |         |        |         | 4     | 24      |        |        |
| 4 | x-dir TIA/EIA Wind with Ice on A | None     |       |         |        |         | 4     | 9       |        |        |
| 5 | x-dir TIA/EIA Wind on Antenna Fr | None     |       |         |        |         | 4     | 9       |        |        |
| 6 | z-dir TIA/EIA Wind with Ice on A | None     |       |         |        |         | 4     | 9       |        |        |
| 7 | z-dir TIA/EIA Wind on Antenna Fr | None     |       |         |        |         | 4     | 9       |        |        |

# **Load Combinations**

| Description |                                | Solve | PDelta | SRSS | В | Fa | BLC | Fa | BLC | Fa | В | Fa | В | Fa | В | Fa | В | Fa | .В | Fa |
|-------------|--------------------------------|-------|--------|------|---|----|-----|----|-----|----|---|----|---|----|---|----|---|----|----|----|
| 1           | x-dir TIA/EIA Wind + Ice on An | Yes   | Υ      |      | 1 | 1  | 2   | 1  | 3   | 1  | 4 | 1  |   |    |   |    |   |    |    |    |
| 2           | x-dir TIA/EIA Wind on Antenna  | Yes   | Υ      |      | 1 | 1  | 2   | 1  | 5   | 1  |   |    |   |    |   |    |   |    |    |    |
| 3           | z-dir TIA/EIA Wind + Ice on An | Yes   | Υ      |      | 1 | 1  | 2   | 1  | 3   | 1  | 6 | 1  |   |    |   |    |   |    |    |    |
| 4           | z-dir TIA/EIA Wind on Antenna  | Yes   | Υ      |      | 1 | 1  | 2   | 1  | 7   | 1  |   |    |   |    |   |    |   |    |    |    |
| 5           | Self Weight                    |       | Υ      |      |   |    |     |    |     |    |   |    |   |    |   |    |   |    |    |    |

# **Envelope Member Section Forces**

|   | Member | Sec |     | Axial[k] | LC | y Shear | LC | z Shear | LC | Torque[ | LC | у-у Мо | LC | z-z Mo | LC |
|---|--------|-----|-----|----------|----|---------|----|---------|----|---------|----|--------|----|--------|----|
| 1 | M1     | 1   | max | 6.203    | 1  | 8.562   | 2  | 0       | 2  | 0       | 1  | 75.78  | 4  | 75.738 | 2  |
| 2 |        |     | min | 4.186    | 2  | 0       | 3  | -8.565  | 4  | 0       | 1  | 0      | 2  | 0      | 3  |
| 3 |        | 2   | max | 5.626    | 1  | 8.221   | 2  | 0       | 2  | 0       | 1  | 47.973 | 4  | 47.942 | 2  |
| 4 |        |     | min | 3.818    | 2  | 0       | 3  | -8.224  | 4  | 0       | 1  | 0      | 2  | 0      | 3  |
| 5 |        | 3   | max | 5.049    | 1  | 7.879   | 2  | 0       | 2  | 0       | 1  | 21.297 | 4  | 21.277 | 2  |
| 6 |        |     | min | 3.45     | 2  | 0       | 3  | -7.883  | 4  | 0       | 1  | 0      | 2  | 0      | 3  |



: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

|    | Member | Sec |     | Axial[k] | LC | y Shear | LC | z Shear | LC | Torque[ | LC | у-у Мо | LC | z-z Mo | LC |
|----|--------|-----|-----|----------|----|---------|----|---------|----|---------|----|--------|----|--------|----|
| 7  |        | 4   | max | .577     | 1  | .391    | 1  | 0       | 2  | 0       | 1  | .728   | 3  | .715   | 1  |
| 8  |        |     | min | .368     | 2  | 0       | 3  | 395     | 3  | 0       | 1  | 0      | 2  | 0      | 3  |
| 9  |        | 5   | max | 0        | 1  | .04     | 1  | 0       | 2  | 0       | 1  | 0      | 1  | 0      | 1  |
| 10 |        |     | min | 0        | 1  | 0       | 3  | 044     | 3  | 0       | 1  | 0      | 1  | 0      | 1  |
| 11 | M2     | 1   | max | 7.622    | 2  | 269     | 4  | 1.607   | 4  | 0       | 4  | .002   | 1  | -1.5   | 4  |
| 12 |        |     | min | 4.091    | 3  | -1.211  | 2  | 003     | 1  | 009     | 1  | 0      | 4  | -5.989 | 2  |
| 13 |        | 2   | max | 7.503    | 2  | 269     | 4  | 1.607   | 4  | 0       | 4  | 7.432  | 4  | 257    | 4  |
| 14 |        |     | min | 3.948    | 3  | -1.211  | 2  | 003     | 1  | 009     | 1  | 01     | 1  | 388    | 2  |
| 15 |        | 3   | max | 7.383    | 2  | 269     | 4  | 1.607   | 4  | 0       | 4  | 14.864 | 4  | 5.212  | 2  |
| 16 |        |     | min | 3.806    | 3  | -1.211  | 2  | 003     | 1  | 009     | 1  | 022    | 1  | .986   | 4  |
| 17 |        | 4   | max | 11.298   | 2  | 2.327   | 2  | .013    | 1  | 0       | 4  | 10.478 | 4  | 2.118  | 2  |
| 18 |        |     | min | 8.179    | 3  | .042    | 3  | -2.412  | 4  | 045     | 1  | 019    | 1  | 72     | 3  |
| 19 |        | 5   | max | 11.1     | 2  | 2.195   | 2  | .013    | 1  | 0       | 4  | .042   | 1  | 914    | 3  |
| 20 |        |     | min | 7.843    | 3  | .042    | 3  | -2.148  | 4  | 045     | 1  | 0      | 4  | -8.305 | 2  |
| 21 | M3     | 1   | max | 7.504    | 2  | .129    | 4  | 1.466   | 4  | 0       | 2  | .012   | 1  | .703   | 4  |
| 22 |        |     | min | -2.41    | 4  | -1.196  | 2  | 005     | 1  | 0       | 1  | 0      | 4  | -5.925 | 2  |
| 23 |        | 2   | max | 7.385    | 2  | .129    | 4  | 1.596   | 4  | 0       | 2  | 7.081  | 4  | .108   | 4  |
| 24 |        |     | min | -2.53    | 4  | -1.196  | 2  | 005     | 1  | 0       | 1  | 012    | 1  | 392    | 2  |
| 25 |        | 3   | max | 7.265    | 2  | .129    | 4  | 1.725   | 4  | 0       | 2  | 14.762 | 4  | 5.141  | 2  |
| 26 |        |     | min | -2.649   | 4  | -1.196  | 2  | 005     | 1  | 0       | 1  | 035    | 1  | 487    | 4  |
| 27 |        | 4   | max | 11.222   | 2  | 2.254   | 2  | .018    | 1  | 0       | 4  | 10.805 | 4  | 2.165  | 2  |
| 28 |        |     | min | -5.49    | 4  | 047     | 4  | -2.401  | 4  | 056     | 1  | 027    | 1  | .236   | 3  |
| 29 |        | 5   | max | 11.102   | 2  | 2.254   | 2  | .018    | 1  | 0       | 4  | .054   | 1  | .583   | 4  |
| 30 |        |     | min | -5.609   | 4  | 047     | 4  | -2.272  | 4  | 056     | 1  | 0      | 4  | -8.259 | 2  |
| 31 | M4     | 1   | max | 4.109    | 4  | .274    | 3  | 1.607   | 4  | 0       | 4  | 0      | 4  | 1.533  | 3  |
| 32 |        |     | min | -5.808   | 2  | 926     | 2  | .001    | 2  | 009     | 1  | 002    | 1  | -4.998 | 2  |
| 33 |        | 2   | max | 3.989    | 4  | .274    | 3  | 1.607   | 4  | 0       | 4  | 7.432  | 4  | .266   | 3  |
| 34 |        |     | min | -5.927   | 2  | -1.055  | 2  | .001    | 2  | 009     | 1  | .005   | 2  | 417    | 2  |
| 35 |        | 3   | max | 3.87     | 4  | .274    | 3  | 1.607   | 4  | 0       | 4  | 14.864 | 4  | 4.762  | 2  |
| 36 |        |     | min | -6.046   | 2  | -1.185  | 2  | .001    | 2  | 009     | 1  | .011   | 2  | -1.001 | 3  |
| 37 |        | 4   | max |          | 4  | 2.373   | 2  | 01      | 2  | 0       | 4  | 10.478 | 4  | 2.431  | 2  |
| 38 |        |     | min | -8.345   | 2  | 048     | 4  | -2.412  | 4  | 045     | 1  | .011   | 2  | .713   | 4  |
| 39 |        | 5   | max | 00       | 4  | 2.111   | 2  | 01      | 2  | 0       | 4  | 0      | 4  | .934   | 4  |
| 40 |        |     | min | -8.543   | 2  | 048     | 4  | -2.148  | 4  | 045     | 1  | 042    | 1  | -7.904 | 2  |
| 41 | M5     | 11  | max | -1.7     | 3  | 079     | 3  | 1.466   | 4  | 0       | 2  | 0      | 4  | 424    | 3  |
| 42 |        |     | min | -5.812   | 2  | 918     | 2  | .004    | 2  | 0       | 1  | 012    | 1  | -4.974 | 2  |
| 43 |        | 2   | max |          | 3  | 079     | 3  | 1.596   | 4  | 0       | 2  | 7.081  | 4  |        | 3  |
| 44 |        | _   |     | -5.931   | 2  | -1.048  | 2  | .004    | 2  |         | 1  | .008   | 2  |        | 2  |
| 45 |        | 3   |     | -1.985   | 3  | 079     | 3  | 1.725   | 4  | 0       | 2  |        |    |        | 2  |
| 46 |        | _   |     | -6.051   | 2  | -1.177  | 2  | .004    | 2  |         | 1  | .027   | 2  |        | 3  |
| 47 |        | 4   |     | -4.045   | 3  | 2.295   | 2  | 015     | 2  | 0       | 4  |        |    | 2.464  | 2  |
| 48 |        |     |     | -8.426   | 2  | .037    | 3  | -2.401  | 4  | 056     | 1  | .02    | 2  | 368    | 4  |
| 49 |        | 5   | max |          | 3  | 2.165   | 2  | 015     | 2  | 0       | 4  | 0      | 4  | 404    | 3  |
| 50 |        |     |     | -8.545   | 2  | .037    | 3  | -2.272  | 4  | 056     | 1  | 054    | 1  | -7.849 |    |
| 51 | M6     | 1   |     | 1.607    | 4  | -4.178  | 3  | 621     | 3  | -2.605  | 4  | 0      | 1  | 0      | 1  |
| 52 |        |     | min | 0        | 1  | -7.462  | 2  | -1.083  | 2  | -5.649  | 2  | 0      | 1  | 0      | 1  |
| 53 |        | 2   | max |          | 4  | 1.667   | 4  | .004    | 1  | 1.814   | 4  | .379   | 4  | 6.822  | 2  |
| 54 |        |     |     | -1.007   | 2  | .063    | 2  | 275     | 4  | .032    | 2  | 235    | 2  | 3.08   | 4  |
| 55 |        | 3   | max | .093     | 4  | 1.631   | 4  | .004    | 1  | 1.814   | 4  | 0      | 4  | 6.759  | 2  |
| 56 |        |     |     | -1.007   | 2  | .028    | 2  | 275     | 4  | .032    | 2  | 23     | 2  | .813   | 4  |
| 57 |        | 4   | max |          | 4  | 1.596   | 4  | .004    | 1  | 1.814   | 4  | 198    | 1  |        | 2  |
| 58 |        |     | min | -1.007   | 2  | 008     | 2  | 275     | 4  | .032    | 2  | 378    | 4  | -1.405 | 4  |

: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

|     | Member | Sec |     | Axial[k] | LC | y Shear | LC | z Shear |   | Torque[ | LC | у-у Мо | LC | z-z Mo | LC |
|-----|--------|-----|-----|----------|----|---------|----|---------|---|---------|----|--------|----|--------|----|
| 59  |        | 5   | max | .005     | 2  | 7.351   | 2  | 1.072   | 2 | 5.589   | 2  | 0      | 1  | 0      | 1  |
| 60  |        |     | min | -1.389   | 4  | -2.338  | 4  | 662     | 4 | -1.103  | 4  | 0      | 1  | 0      | 1  |
| 61  | M7     | 1   | max | .533     | 4  | .085    | 3  | .077    | 4 | 0       | 4  | 0      | 1  | 143    | 1  |
| 62  |        |     | min | .125     | 2  | 154     | 2  | 0       | 1 | 012     | 1  | 0      | 2  | 399    | 4  |
| 63  |        | 2   | max | .533     | 4  | .042    | 3  | .039    | 4 | 0       | 4  | .079   | 4  | .042   | 1  |
| 64  |        |     | min | .125     | 2  | 189     | 2  | 0       | 1 | 012     | 1  | 0      | 2  | 472    | 4  |
| 65  |        | 3   | max | .533     | 4  | 0       | 4  | 0       | 2 | 0       | 4  | .106   | 4  | .285   | 1  |
| 66  |        |     | min | .125     | 2  | 225     | 2  | 0       | 1 | 012     | 1  | 0      | 1  | 497    | 4  |
| 67  |        | 4   | max | .533     | 4  | 035     | 4  | 0       | 2 | 0       | 4  | .079   | 4  | .587   | 1  |
| 68  |        |     | min | .125     | 2  | 26      | 2  | 038     | 4 | 012     | 1  | 0      | 1  | 472    | 4  |
| 69  |        | 5   | max | .533     | 4  | 071     | 4  | 0       | 2 | 0       | 4  | 0      | 2  | .946   | 1  |
| 70  |        |     | min | .125     | 2  | 296     | 2  | 077     | 4 | 012     | 1  | 0      | 1  | 399    | 4  |
| 71  | M8     | 1   | max | 004      | 1  | 5.517   | 2  | 1.043   | 2 | 4.074   | 2  | 0      | 1  | 0      | 1  |
| 72  |        |     | min | -1.389   | 4  | 1.614   | 3  | .591    | 3 | .615    | 3  | 0      | 1  | 0      | 1  |
| 73  |        | 2   | max | 1        | 2  | .033    | 2  | .275    | 4 | 002     | 2  | .213   | 2  | 827    | 3  |
| 74  |        |     | min | .082     | 3  | -1.596  | 4  | .038    | 1 | -1.814  | 4  | 378    | 4  | -5.066 | 2  |
| 75  |        | 3   | max | 1        | 2  | 003     | 2  | .275    | 4 | 002     | 2  | .244   | 2  | 1.137  | 3  |
| 76  |        |     | min | .082     | 3  | -1.631  | 4  | .003    | 2 | -1.814  | 4  | 0      | 3  | -5.086 | 2  |
| 77  |        | 4   | max | 1        | 2  | 038     | 2  | .275    | 4 | 002     | 2  | .379   | 4  | 3.158  | 3  |
| 78  |        |     | min | .082     | 3  | -1.667  | 4  | 035     | 2 | -1.814  | 4  | .196   | 1  | -5.058 | 2  |
| 79  |        | 5   | max | 1.607    | 4  | 4.183   | 4  | .688    | 4 | 2.678   | 3  | 0      | 1  | 0      | 1  |
| 80  |        |     | min | 002      | 2  | -5.506  | 2  | -1.054  | 2 | -4.066  | 2  | 0      | 1  | 0      | 1  |
| 81  | M9     | 1   | max | .149     | 1  | .302    | 2  | 0       | 4 | 0       | 4  | .009   | 1  | 1.145  | 3  |
| 82  |        |     | min | 419      | 4  | .071    | 4  | 003     | 1 | 002     | 1  | 0      | 4  | .932   | 2  |
| 83  |        | 2   | max | .149     | 1  | .267    | 2  | 0       | 4 | 0       | 4  | .005   | 1  | 1.058  | 3  |
| 84  |        |     | min | 419      | 4  | .035    | 4  | 003     | 1 | 002     | 1  | 0      | 4  | .541   | 2  |
| 85  |        | 3   | max | .149     | 1  | .231    | 2  | 0       | 4 | 0       | 4  | 0      | 1  | 1.029  | 3  |
| 86  |        |     | min | 419      | 4  | 0       | 4  | 003     | 1 | 002     | 1  | 0      | 1  | .199   | 2  |
| 87  |        | 4   | max | .149     | 1  | .196    | 2  | 0       | 4 | 0       | 4  | 0      | 4  | 1.058  | 3  |
| 88  |        |     | min | 419      | 4  | 042     | 3  | 003     | 1 | 002     | 1  | 005    | 1  | 095    | 2  |
| 89  |        | 5   | max | .149     | 1  | .16     | 2  | 0       | 4 | 0       | 4  | 0      | 4  | 1.145  | 3  |
| 90  |        |     | min | 419      | 4  | 085     | 3  | 003     | 1 | 002     | 1  | 009    | 1  | 34     | 2  |
| 91  | M10    | 1   | max | .028     | 1  | -4.727  | 3  | 3.679   | 2 | -3.048  | 4  | 0      | 1  | 0      | 1  |
| 92  |        |     | min | -3.975   | 4  | -6.366  | 2  | 1.696   | 3 | -4.781  | 2  | 0      | 1  | 0      | 1  |
| 93  |        | 2   | max | 3.359    | 2  | 1.883   | 4  | .789    | 4 | 1.95    | 4  | .845   | 2  | 5.821  | 2  |
| 94  |        |     | min | .164     | 3  | .054    | 2  | 066     | 1 | .051    | 2  | -1.079 | 4  | 3.483  | 4  |
| 95  |        | 3   | max | 3.359    | 2  | 1.847   | 4  | .789    | 4 | 1.95    | 4  | .767   | 2  | 5.771  | 2  |
| 96  |        |     | min | .164     | 3  | .019    | 2  | 066     | 1 | .051    | 2  | .005   | 3  | .919   | 4  |
| 97  |        | 4   | max | 3.359    | 2  | 1.812   | 4  | .789    | 4 | 1.95    | 4  | 1.09   | 4  | 5.77   | 2  |
| 98  |        |     | min | .164     | 3  | 017     | 2  | 066     | 1 | .051    | 2  | .592   | 1  | -1.597 | 4  |
| 99  |        | 5   | max |          | 4  | 6.291   | 2  | 1.891   | 4 | 4.8     | 2  | 0      | 1  | 0      | 1  |
| 100 |        |     | min | 042      | 1  | -2.656  | 4  | -3.502  | 2 | -1.364  | 4  | 0      | 1  | 0      | 1  |
| 101 | M11    | 1   | max | .129     | 2  | 2.216   | 2  | .077    | 4 | .033    | 1  | .056   | 1  | 6.21   | 2  |
| 102 |        |     | min | -1.716   | 4  | .071    | 4  | 02      | 1 | 0       | 4  | 0      | 4  | 418    | 4  |
| 103 |        | 2   | max | .129     | 2  | 2.18    | 2  | .039    | 4 | .033    | 1  | .079   | 4  | 3.188  | 2  |
| 104 |        |     | min | -1.716   | 4  | .035    | 4  | 02      | 1 | 0       | 4  | .025   | 2  | 491    | 4  |
| 105 |        | 3   | max | .129     | 2  | 2.145   | 2  | 0       | 4 | .033    | 1  | .106   | 4  | .291   | 1  |
| 106 |        |     | min |          | 4  | 0       | 4  | 02      | 1 | 0       | 4  | 0      | 1  | 515    | 4  |
| 107 |        | 4   | max | .129     | 2  | 2.109   | 2  | 018     | 2 | .033    | 1  | .079   | 4  | 317    | 3  |
| 108 |        |     | min | -1.716   | 4  | 042     | 3  | 038     | 4 | 0       | 4  | 028    | 1  | -2.711 | 2  |
| 109 |        | 5   | max | .129     | 2  | 2.074   | 2  | 018     | 2 | .033    | 1  | 0      | 4  | 23     | 3  |
| 110 |        |     | min | -1.716   | 4  | 085     | 3  | 077     | 4 | 0       | 4  | 056    | 1  | -5.587 | 2  |

: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

|     | Member  | Sec |     | Axial[k] | LC | v Shear | LC | z Shear | LC | Torque[ | LC | v-v Mo | LC | z-z Mo  | LC |
|-----|---------|-----|-----|----------|----|---------|----|---------|----|---------|----|--------|----|---------|----|
| 111 | M12     | 1   | max | 4.483    | 4  | 4.33    | 2  | -1.697  | 3  | 3.229   | 2  | 0      | 1  | 0       | 1  |
| 112 |         |     | min | .038     | 2  | 1.836   | 3  | -3.53   | 2  | .804    | 3  | 0      | 1  | 0       | 1  |
| 113 |         | 2   | max | .237     | 4  | .018    | 2  | 018     | 2  | .015    | 2  | 1.09   | 4  | 941     | 3  |
| 114 |         |     | min | -3.367   | 2  | -1.812  | 4  | 789     | 4  | -1.95   | 4  | 701    | 2  | -3.971  | 2  |
| 115 |         | 3   | max | .237     | 4  | 017     | 2  | 057     | 2  | .015    | 2  | .006   | 4  | 1.287   | 3  |
| 116 |         |     | min | -3.367   | 2  | -1.847  | 4  | 789     | 4  | -1.95   | 4  | 753    | 2  | -3.971  | 2  |
| 117 |         | 4   | max | .237     | 4  | 053     | 2  | 095     | 2  | .015    | 2  | 782    | 1  | 3.574   | 3  |
| 118 |         |     | min | -3.367   | 2  | -1.883  | 4  | 789     | 4  | -1.95   | 4  | -1.078 | 4  | -3.923  | 2  |
| 119 |         | 5   | max | 022      | 2  | 4.73    | 4  | 3.709   | 2  | 3.121   | 3  | 0      | 1  | 0       | 1  |
| 120 |         |     | min | -3.975   | 4  | -4.261  | 2  | -1.875  | 4  | -3.121  | 2  | 0      | 1  | 0       | 1  |
| 121 | M13     | 1   | max | 1.558    | 4  | .085    | 3  | 0       | 4  | .03     | 1  | .036   | 1  | 1.041   | 3  |
| 122 |         |     | min | .073     | 1  | -2.135  | 2  | 013     | 1  | 0       | 4  | 0      | 4  | -5.743  | 2  |
| 123 |         | 2   | max | 1.558    | 4  | .042    | 3  | 0       | 4  | .03     | 1  | .018   | 1  | .954    | 3  |
| 124 |         |     | min | .073     | 1  | -2.17   | 2  | 013     | 1  | 0       | 4  | 0      | 4  | -2.783  | 2  |
| 125 |         | 3   | max | 1.558    | 4  | 0       | 4  | 0       | 4  | .03     | 1  | 0      | 1  | .925    | 3  |
| 126 |         |     | min | .073     | 1  | -2.206  | 2  | 013     | 1  | 0       | 4  | 0      | 1  | .225    | 2  |
| 127 |         | 4   | max | 1.558    | 4  | 035     | 4  | 0       | 4  | .03     | 1  | 0      | 4  | 3.283   | 2  |
| 128 |         |     | min | .073     | 1  | -2.241  | 2  | 013     | 1  | 0       | 4  | 018    | 1  | .944    | 4  |
| 129 |         | 5   | max | 1.558    | 4  | 071     | 4  | 0       | 4  | .03     | 1  | 0      | 4  | 6.389   | 2  |
| 130 |         |     | min | .073     | 11 | -2.277  | 2  | 013     | 1  | 0       | 4  | 036    | 1  | 1.017   | 4  |
| 131 | M14     | 1   | max | 1.92     | 4  | 8.15    | 2  | 344     | 3  | 1.975   | 4  | 0      | 1  | 0       | 1  |
| 132 |         |     | min | 029      | 1  | 7.76    | 3  | -2.131  | 2  | .541    | 2  | 0      | 1  | 0       | 1  |
| 133 |         | 2   | max | 1.92     | 4  | 8.115   | 2  | 344     | 3  | 1.975   | 4  | 473    |    | -10.641 |    |
| 134 |         |     | min | 029      | 1  | 7.717   | 3  | -2.131  | 2  | .541    | 2  | -2.93  | _  | -11.182 | 2  |
| 135 |         | 3   | max | 192      | 3  | .002    | 1  | 029     | 2  | .014    | 1  | 001    | 3  | -1.83   | 4  |
| 136 |         |     | min | -1.513   | 2  | -4.846  | 4  | -1.416  | 4  | -6.843  | 4  | -2.037 | 2  | -12.563 | 2  |
| 137 |         | 4   | max | .037     | 1  | 5.718   | 4  | 2.188   | 2  | 1.279   | 4  | .541   | 4  | 7.838   | 4  |
| 138 |         |     | min | -2.345   | 4  | -8.126  | 2  | 393     | 4  | 68      | 1  | -3.008 | 2  | -11.198 | 2  |
| 139 |         | 5   | max | .037     | 1  | 5.682   | 4  | 2.188   | 2  | 1.279   | 4  | 0      | 1  | 0       | 1  |
| 140 |         |     | min | -2.345   | 4  | -8.161  | 2  | 393     | 4  | 68      | 1  | 0      | 1  | 0       | 1  |
| 141 | M15     | 1   | max | .347     | 4  | 2.941   | 2  | .077    | 4  | .054    | 1  | 0      | 4  | 7.741   | 2  |
| 142 |         |     | min | 012      | 2  | .071    | 4  | .018    | 2  | 0       | 4  | 056    | 1  | .499    | 3  |
| 143 |         | 2   | max | .347     | 4  | 2.906   | 2  | .038    | 4  | .054    | 1  | .079   | 4  | 3.722   | 2  |
| 144 |         |     | min | 012      | 2  | .035    | 4  | .018    | 2  | 0       | 4  | 028    | 1  | .412    | 3  |
| 145 |         | 3   | max | .347     | 4  | 2.87    | 2  | .02     | 1  | .054    | 1  | .106   | 4  | .599    | 4  |
| 146 |         |     | min | 012      | 2  | 0       | 4  | 0       | 4  | 0       | 4  | 0      | 1  | 357     | 1  |
| 147 |         | 4   | max | .0       | 4  | 2.835   | 2  | .02     | 1  | .054    | 1  | .079   | 4  | .623    | 4  |
| 148 |         |     | min |          | 2  | 042     | 3  | 039     | 4  |         | 4  | .025   | 2  |         |    |
| 149 |         | 5   | max |          | 4  | 2.799   | 2  | .02     | 1  | .054    | 1  | .056   | 1  |         | 4  |
| 150 |         |     | min |          | 2  | 085     | 3  | 077     | 4  |         | 4  | 0      | 4  |         |    |
| 151 | M16     | 1   | max |          | 2  | -4.275  | 3  | 2.212   | 2  | .37     | 1  | 0      | 1  | 0       | 1  |
| 152 |         |     |     | -2.345   | 4  | -5.746  | 2  | .345    | 3  |         | 4  | 0      | 1  | 0       | 1  |
| 153 |         | 2   | max |          | 2  | -4.317  | 3  | 2.173   | 2  | .37     | 1  | 3.014  | 2  | 7.925   | 2  |
| 154 |         |     |     | -2.345   | 4  | -5.781  | 2  | .345    | 3  |         | 4  |        | 3  |         | 3  |
| 155 |         | 3   | max |          | 2  | 4.846   | 4  | 1.416   | 4  |         | 4  | 2.038  | 2  |         | 2  |
| 156 |         |     | min | 21       | 4  | 0       | 1  | 033     | 1  | .014    | 2  | 002    | 4  |         |    |
| 157 |         | 4   | max | 1.92     | 4  | 5.77    | 2  | .392    | 4  | 169     | 2  | 2.936  | 2  |         | 2  |
| 158 |         |     | min | .024     | 2  | -8.061  | 4  |         | 2  | -1.975  | 4  | 539    |    | -11.108 |    |
| 159 |         | 5   | max |          | 4  | 5.735   | 2  | .392    | 4  | 169     | 2  | 0      | 1  | 0       | 1  |
| 160 | N 4 4 = |     | min | .024     | 2  | -8.096  | 4  | -2.154  | 2  | -1.975  | 4  | 0      | 1  | 0       | 1  |
| 161 | M17     | 1   | max |          | 11 | .085    | 3  | .016    | 1  | .042    | 1  | 0      |    | -1.021  |    |
| 162 |         |     | min | 344      | 4  | -2.808  | 2  | 0       | 4  | 0       | 4  | 045    | 1  | -8.072  | 2  |

: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

|     | Member | Sec      |        | Axial[k] | LC | v Shear | LC                | z Shear | LC | Torque[             | LC | v-v Mo | LC | z-z Mo  | LC |
|-----|--------|----------|--------|----------|----|---------|-------------------|---------|----|---------------------|----|--------|----|---------|----|
| 163 |        | 2        | max    | 006      | 1  | .042    | 3                 | .016    | 1  | .042                | 1  | 0      | 4  | -1.108  |    |
| 164 |        |          | min    | 344      | 4  | -2.844  | 2                 | 0       | 4  | 0                   | 4  | 023    | 1  | -4.186  |    |
| 165 |        | 3        | max    | 006      | 1  | 0       | 4                 | .016    | 1  | .042                | 1  | 0      | 1  | 252     | 2  |
| 166 |        |          | min    | 344      | 4  | -2.879  | 2                 | 0       | 4  | 0                   | 4  | 0      | 1  | -1.139  | 4  |
| 167 |        | 4        | max    | 006      | 1  | 035     | 4                 | .016    | 1  | .042                | 1  | .023   | 1  | 3.732   | 2  |
| 168 |        |          | min    | 344      | 4  | -2.915  | 2                 | 0       | 4  | 0                   | 4  | 0      | 4  | -1.114  | 4  |
| 169 |        | 5        | max    | 006      | 1  | 071     | 4                 | .016    | 1  | .042                | 1  | .045   | 1  | 7.764   | 2  |
| 170 |        |          | min    | 344      | 4  | -2.95   | 2                 | 0       | 4  | 0                   | 4  | 0      | 4  | -1.041  | 4  |
| 171 | M18    | 1        | max    | 1.023    | 4  | -4.432  | 1                 | -1.365  | 1  | -1.997              | 1  | 2.315  | 2  | .354    | 1  |
| 172 |        |          | min    | -2.163   | 2  | -10.6   | 4                 | -2.136  | 4  | -9.605              | 4  | 1.625  | 3  | -8.122  | 4  |
| 173 |        | 2        | max    | 1.023    | 4  | -4.474  | 1                 | -1.365  | 1  | -1.997              | 1  | .191   | 2  | 8.223   | 2  |
| 174 |        |          | min    | -2.163   | 2  | -10.635 | 4                 | -2.136  | 4  | -9.605              | 4  | -1.087 | 4  | 4.961   | 3  |
| 175 |        | 3        | max    | 0        | 4  | 0       | 2                 | 0       | 2  | 0                   | 3  | 0      | 1  | 002     | 4  |
| 176 |        |          | min    | 0        | 1  | 0       | 3                 | 0       | 3  | 0                   | 2  | 0      | 4  | 003     | 1  |
| 177 |        | 4        | max    | 2.217    | 2  | 10.635  | 4                 | 2.136   | 4  | 9.605               | 4  | 167    | 1  | 6.477   | 4  |
| 178 |        |          | min    | .898     | 3  | -8.046  | 2                 | -1.546  | 2  | -3.714              | 2  | -1.087 | 4  | -10.557 | 2  |
| 179 |        | 5        | max    | 2.217    | 2  | 10.6    | 4                 | 2.136   | 4  | 9.605               | 4  | 1.85   | 4  | .694    | 1  |
| 180 |        |          | min    | .898     | 3  | -8.081  | 2                 | -1.546  | 2  | -3.714              | 2  | -2.317 | 2  | -8.122  | 4  |
| 181 | M19    | 1        | max    | 2.102    | 2  | 12.869  | 4                 | 2.129   | 4  | 10.683              | 4  | -1.62  | 3  | 8.818   | 4  |
| 182 |        |          | min    | -1.024   | 4  | 7.715   | 1                 | 1.3     | 1  | 3.536               | 1  | -2.246 | 2  | .528    | 2  |
| 183 |        | 2        | max    | 2.102    | 2  | 12.833  | 4                 | 2.129   | 4  | 10.683              | 4  | 1.083  | 4  | -8.428  | 3  |
| 184 |        |          | min    | -1.024   | 4  | 7.673   | 1                 | 1.3     | 1  | 3.536               | 1  | 198    |    | -10.539 |    |
| 185 |        | 3        | max    | 0        | 1  | 0       | 3                 | 0       | 3  | 0                   | 2  | 0      | 4  | 002     | 2  |
| 186 |        |          | min    | 0        | 4  | 0       | 2                 | 0       | 2  | 0                   | 3  | 0      | 1  | 003     | 3  |
| 187 |        | 4        | max    | 899      | 3  | 5.852   | 2                 | 1.487   | 2  | 2.614               | 2  | 1.083  | 4  | 8.204   | 2  |
| 188 |        |          | min    | -2.049   | 2  | -12.833 | 4                 | -2.129  |    | -10.683             |    | .175   | 1  | -8.851  | 4  |
| 189 |        | 5        | max    | 899      | 3  | 5.816   | 2                 | 1.487   | 2  | 2.614               | 2  | 2.244  | 2  | 8.818   | 4  |
| 190 |        |          | min    | -2.049   | 2  | -12.869 | 4                 | -2.129  |    | -10.683             |    | -1.845 | 4  | .183    | 2  |
| 191 | M20    | 1        | max    | 0        | 3  | .023    | 3                 | 0       | 4  | 0                   | 4  | 0      | 2  | .006    | 3  |
| 192 |        |          | min    | 0        | 2  | .019    | 2                 | 0       | 1  | 0                   | 1  | 0      | 4  | .005    | 2  |
| 193 |        | 2        | max    | 0        | 3  | .012    | 3                 | 0       | 4  | 0                   | 4  | 0      | 2  | 0       | 4  |
| 194 |        |          | min    | 0        | 2  | .01     | 2                 | 0       | 1  | 0                   | 1  | 0      | 4  | 0       | 1  |
| 195 |        | 3        | max    | 0        | 3  | 0       | 4                 | 0       | 4  | 0                   | 4  | 0      | 2  | 002     | 2  |
| 196 |        |          | min    | 0        | 2  | 0       | 1                 | 0       | 1  | 0                   | 1  | 0      | 3  | 003     | 3  |
| 197 |        | 4        | max    | 0        | 3  | 01      | 4                 | 0       | 4  | 0                   | 4  | 0      | 4  | 0       | 2  |
| 198 |        |          | min    | 0        | 2  | 012     | 1                 | 0       | 1  | 0                   | 1  | 0      | 1  | 0       | 3  |
| 199 |        | 5        | max    | 0        | 3  | 019     | 4                 | 0       | 4  | 0                   | 4  | 0      | 4  | .006    | 1  |
| 200 | N/O4   | 4        | min    | 0        | 2  | 023     | 1                 | 0       | 1  | 0                   | 1  | 0      | 4  | .005    | 4  |
| 201 | M21    | 1        | min    | 0        | 3  | .023    | 2                 | 0       | 4  | 0                   | 4  | 0      | 1  | .006    | 2  |
| 202 |        | 2        | max    | 0        | 2  | .019    | 3                 | 0       | 1  | 0                   | 1  | 0      | 4  | 0       | 4  |
| 204 |        |          | min    | 0        | 3  | .012    | 2                 | 0       | 4  | 0                   | 4  | 0      | 1  | 0       | 1  |
| 205 |        | 3        | max    | 0        | 2  | 0       | 4                 | 0       | 1  | 0                   | 1  | 0      | 2  | 002     | 4  |
| 206 |        | <u> </u> | min    | 0        | 3  | 0       | <del>4</del><br>1 | 0       | 4  | 0                   | 4  | 0      | 3  | 002     | 1  |
| 207 |        | 4        | max    | 0        | 2  | 01      | 4                 | 0       | 1  | 0                   | 1  | 0      | 2  | 0       | 2  |
| 208 |        |          | min    | 0        | 3  | 012     | 1                 | 0       | 4  | 0                   | 4  | 0      | 4  | 0       | 3  |
| 209 |        | 5        | max    | 0        | 2  | 012     | 4                 | 0       | 1  | 0                   | 1  | 0      | 2  | .006    | 1  |
| 210 |        | J        | min    | 0        | 3  | 019     | 1                 | 0       | 4  | 0                   | 4  | 0      | 4  | .005    | 4  |
| 211 | M22    | 1        | max    | .782     | 4  | 12.776  | 4                 | 343     | 1  | 4.38                | 3  | .731   | 2  | 10.233  | 2  |
| 212 | IVIZZ  |          | min    |          | 2  | -5.909  | 2                 | -2.23   | 4  | -6.542              | 2  | -2.414 | _  | -19.488 |    |
| 213 |        | 2        | max    |          | 4  | 12.776  | 4                 | 343     | 1  | 4.38                | 3  | .52    |    | 13.367  |    |
| 214 |        |          |        | -2.501   | 2  | -5.909  | 2                 | -2.23   | 4  |                     | 2  |        |    | -26.263 |    |
| 414 |        |          | 111111 | -Z.JU I  | _  | -J. 908 |                   | -2.23   | 4  | -U.J <del>4</del> Z | _  | -0.080 | 4  | 20.203  | _  |



: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

|     | Member | Sec |     | Axial[k] | LC | y Shear | LC | z Shear | LC | Torque[ | LC | y-y Mo | LC | z-z Mo  | LC |
|-----|--------|-----|-----|----------|----|---------|----|---------|----|---------|----|--------|----|---------|----|
| 215 |        | 3   | max | 2.66     | 2  | 12.776  | 4  | .475    | 2  | 8.391   | 2  | .31    | 2  | -21.008 | 1  |
| 216 |        |     | min | 787      | 4  | -7.987  | 2  | -2.23   | 4  | 4.373   | 4  | -4.791 | 4  | -33.039 | 4  |
| 217 |        | 4   | max | 2.66     | 2  | 10.693  | 4  | 2.233   | 4  | 8.391   | 2  | .523   | 2  | 21.739  | 4  |
| 218 |        |     | min | 787      | 4  | -7.987  | 2  | .423    | 1  | -2.491  | 4  | -3.606 | 4  | -17.885 | 2  |
| 219 |        | 5   | max | 2.66     | 2  | 10.693  | 4  | 2.233   | 4  | 8.391   | 2  | .774   | 2  | 16.068  | 4  |
| 220 |        |     | min | 787      | 4  | -7.987  | 2  | .423    | 1  | -2.491  | 4  | -2.422 | 4  | -13.65  | 2  |
| 221 | M23    | 1   | max | 2.539    | 2  | 12.776  | 4  | 2.23    | 4  | -4.373  | 4  | 2.414  | 4  | -12.888 | 1  |
| 222 |        |     | min | .686     | 3  | 7.604   | 1  | 433     | 2  | -8.387  | 2  | .637   | 1  | -19.488 | 4  |
| 223 |        | 2   | max | 2.539    | 2  | 12.776  | 4  | 2.23    | 4  | -4.373  | 4  | 3.596  | 4  | -16.921 | 1  |
| 224 |        |     | min | .686     | 3  | 7.604   | 1  | 433     | 2  | -8.387  | 2  | .438   | 1  | -26.263 | 4  |
| 225 |        | 3   | max | 691      | 3  | 12.776  | 4  | 2.23    | 4  | -4.373  | 4  | 4.791  | 4  | -20.953 | 1  |
| 226 |        |     | min | -2.622   | 2  | 7.604   | 1  | 433     | 2  | -8.387  | 2  | .274   | 1  | -33.039 | 4  |
| 227 |        | 4   | max | 691      | 3  | 10.693  | 4  | .437    | 2  | 6.546   | 2  | 3.606  | 4  | 21.739  | 4  |
| 228 |        |     | min | -2.622   | 2  | 4.541   | 1  | -2.233  | 4  | 1.615   | 3  | .48    | 1  | 10.373  | 1  |
| 229 |        | 5   | max | 691      | 3  | 10.693  | 4  | .437    | 2  | 6.546   | 2  | 2.422  | 4  | 16.068  | 4  |
| 230 |        |     | min | -2.622   | 2  | 4.541   | 1  | -2.233  | 4  | 1.615   | 3  | .686   | 1  | 7.965   | 1  |
| 231 | M24    | 1   | max | 1.086    | 2  | -5.71   | 3  | 1.514   | 4  | 0       | 1  | 668    | 1  | -4.29   | 3  |
| 232 |        |     | min | .373     | 3  | -7.566  | 2  | .891    | 1  | 0       | 1  | -1.136 | 4  | -5.682  | 2  |
| 233 |        | 2   | max | 1.086    | 2  | -5.715  | 3  | 1.514   | 4  | 0       | 1  | 501    | 1  | -3.219  | 3  |
| 234 |        |     | min | .373     | 3  | -7.571  | 2  | .891    | 1  | 0       | 1  | 852    | 4  | -4.263  | 2  |
| 235 |        | 3   | max | 1.086    | 2  | -5.72   | 3  | 1.514   | 4  | 0       | 1  | 334    | 1  | -2.147  | 3  |
| 236 |        |     | min | .373     | 3  | -7.575  | 2  | .891    | 1  | 0       | 1  | 568    | 4  | -2.843  | 2  |
| 237 |        | 4   | max | 1.086    | 2  | -5.724  | 3  | 1.514   | 4  | 0       | 1  | 167    | 1  | -1.074  | 3  |
| 238 |        |     | min | .373     | 3  | -7.58   | 2  | .891    | 1  | 0       | 1  | 284    | 4  | -1.422  | 2  |
| 239 |        | 5   | max | 1.086    | 2  | -5.729  | 3  | 1.514   | 4  | 0       | 1  | 0      | 1  | 0       | 1  |
| 240 |        |     | min | .373     | 3  | -7.585  | 2  | .891    | 1  | 0       | 1  | 0      | 1  | 0       | 1  |
| 241 | M25    | 1   | max | 1.068    | 2  | 3.899   | 4  | 1.482   | 4  | 0       | 1  | .759   | 2  | 2.917   | 4  |
| 242 |        |     | min | 387      | 4  | -7.399  | 2  | -1.012  | 2  | 0       | 1  | -1.111 | 4  | -5.556  | 2  |
| 243 |        | 2   | max | 1.068    | 2  | 3.894   | 4  | 1.482   | 4  | 0       | 1  | .569   | 2  | 2.186   | 4  |
| 244 |        |     | min | 387      | 4  | -7.403  | 2  | -1.012  | 2  | 0       | 1  | 834    | 4  | -4.168  | 2  |
| 245 |        | 3   | max | 1.068    | 2  | 3.889   | 4  | 1.482   | 4  | 0       | 1  | .379   | 2  | 1.457   | 4  |
| 246 |        |     | min | 387      | 4  | -7.408  | 2  | -1.012  | 2  | 0       | 1  | 556    | 4  | -2.78   | 2  |
| 247 |        | 4   | max | 1.068    | 2  | 3.885   | 4  | 1.482   | 4  | 0       | 1  | .19    | 2  | .728    | 4  |
| 248 |        |     | min | 387      | 4  | -7.413  | 2  | -1.012  | 2  | 0       | 1  | 278    | 4  | -1.39   | 2  |
| 249 |        | 5   | max | 1.068    | 2  | 3.88    | 4  | 1.482   | 4  | 0       | 1  | 0      | 1  | 0       | 1  |
| 250 |        |     | min | 387      | 4  | -7.418  | 2  | -1.012  | 2  | 0       | 1  | 0      | 1  | 0       | 1  |
| 251 | M26    | 1   | max | .412     | 4  | 5.429   | 2  | 1.002   | 2  | 0       | 1  | 1.136  | 4  | 4.064   | 2  |
| 252 |        |     | min | 98       | 2  | -5.882  | 4  | -1.514  |    | 0       | 1  | 752    | 2  |         |    |
| 253 |        | 2   | max | .412     | 4  | 5.424   | 2  | 1.002   | 2  | 0       | 1  | .852   | 4  |         | 2  |
| 254 |        | _   | min | 98       | 2  | -5.887  | 4  | -1.514  |    | 0       | 1  | 564    | 2  |         |    |
| 255 |        | 3   | max | .412     | 4  | 5.419   | 2  | 1.002   | 2  | 0       | 1  | .568   | 4  | 2.03    | 2  |
| 256 |        | -   | min | 98       | 2  | -5.892  | 4  | -1.514  |    | 0       | 1  | 376    | 2  | -2.211  | -  |
| 257 |        | 4   | max | .412     | 4  | 5.414   | 2  | 1.002   | 2  | 0       | 1  | .284   | 4  | 1.015   | 2  |
| 258 |        | _   | min | 98       | 2  | -5.897  | 4  | -1.514  |    | 0       | 1  | 188    | 2  | -1.106  | 4  |
| 259 |        | 5   | max | .412     | 4  | 5.409   | 2  | 1.002   | 2  | 0       | 1  | 0      | 1  | 0       | 1  |
| 260 |        |     | min | 98       | 2  | -5.902  | 4  | -1.514  | 4  | 0       | 1  | 0      | 1  | 0       | 1  |
| 261 | M27    | 11  | max | 344      | 3  | 5.445   | 2  | 882     | 1  | 0       | 1  | 1.111  | 4  | 4.076   | 2  |
| 262 |        |     | min | 963      | 2  | 2.979   | 3  | -1.482  | 4  | 0       | 1  | .662   | 1  | 2.227   | 3  |
| 263 |        | 2   | max | 344      | 3  | 5.44    | 2  | 882     | 1  | 0       | 1  | .834   | 4  | 3.056   | 2  |
| 264 |        |     | min | 963      | 2  | 2.975   | 3  | -1.482  | 4  | 0       | 1  | .496   | 1  | 1.669   | 3  |
| 265 |        | 3   | max |          | 3  | 5.435   | 2  | 882     | 1  | 0       | 1  | .556   | 4  |         | 2  |
| 266 |        |     | min | 963      | 2  | 2.97    | 3  | -1.482  | 4  | 0       | 1  | .331   | 1  | 1.112   | 3  |



Model Name

y : CENTEK Engineering, INC. r : tjl, cfc nber : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_\_

# **Envelope Member Section Forces (Continued)**

|     | Member | Sec |     | Axial[k] | LC | y Shear | LC | z Shear | LC | Torque[ | LC | v-v Mo | LC | z-z Mo | LC |
|-----|--------|-----|-----|----------|----|---------|----|---------|----|---------|----|--------|----|--------|----|
| 267 |        | 4   | max | 344      | 3  | 5.43    | 2  | 882     | 1  | 0       | 1  | .278   | 4  | 1.018  | 2  |
| 268 |        |     | min | 963      | 2  | 2.965   | 3  | -1.482  | 4  | 0       | 1  | .165   | 1  | .555   | 3  |
| 269 |        | 5   | max | 344      | 3  | 5.426   | 2  | 882     | 1  | 0       | 1  | 0      | 1  | 0      | 1  |
| 270 |        |     | min | 963      | 2  | 2.96    | 3  | -1.482  | 4  | 0       | 1  | 0      | 1  | 0      | 1  |
| 271 | M28    | 1   | max | 985      | 3  | -6.288  | 1  | -2.961  | 1  | 0       | 1  | 3.159  | 4  | -4.723 | 1  |
| 272 |        |     | min | -3.736   | 2  | -6.655  | 4  | -4.212  | 4  | 0       | 1  | 2.221  | 1  | -4.998 | 4  |
| 273 |        | 2   | max | 985      | 3  | -6.292  | 1  | -2.961  | 1  | 0       | 1  | 2.369  | 4  | -3.544 | 1  |
| 274 |        |     | min | -3.736   | 2  | -6.66   | 4  | -4.212  | 4  | 0       | 1  | 1.666  | 1  | -3.75  | 4  |
| 275 |        | 3   | max | 985      | 3  | -6.297  | 1  | -2.961  | 1  | 0       | 1  | 1.579  | 4  | -2.363 | 1  |
| 276 |        |     | min | -3.736   | 2  | -6.665  | 4  | -4.212  | 4  | 0       | 1  | 1.11   | 1  | -2.501 | 4  |
| 277 |        | 4   | max | 985      | 3  | -6.302  | 1  | -2.961  | 1  | 0       | 1  | .79    | 4  | -1.182 | 1  |
| 278 |        |     | min | -3.736   | 2  | -6.669  | 4  | -4.212  | 4  | 0       | 1  | .555   | 1  | -1.251 | 4  |
| 279 |        | 5   | max | 985      | 3  | -6.307  | 1  | -2.961  | 1  | 0       | 1  | 0      | 1  | 0      | 1  |
| 280 |        |     | min | -3.736   | 2  | -6.674  | 4  | -4.212  | 4  | 0       | 1  | 0      | 1  | 0      | 1  |
| 281 | M29    | 1   | max | 1.103    | 4  | 4.428   | 4  | 3.398   | 2  | 0       | 1  | 3.185  | 4  | 3.314  | 4  |
| 282 |        |     | min | -3.445   | 2  | -6.323  | 2  | -4.247  | 4  | 0       | 1  | -2.548 | 2  | -4.75  | 2  |
| 283 |        | 2   | max | 1.103    | 4  | 4.424   | 4  | 3.398   | 2  | 0       | 1  | 2.389  | 4  | 2.484  | 4  |
| 284 |        |     | min | -3.445   | 2  | -6.328  | 2  | -4.247  | 4  | 0       | 1  | -1.911 | 2  | -3.564 | 2  |
| 285 |        | 3   | max | 1.103    | 4  | 4.419   | 4  | 3.398   | 2  | 0       | 1  | 1.593  | 4  | 1.655  | 4  |
| 286 |        |     | min | -3.445   | 2  | -6.333  | 2  | -4.247  | 4  | 0       | 1  | -1.274 | 2  | -2.377 | 2  |
| 287 |        | 4   | max | 1.103    | 4  | 4.414   | 4  | 3.398   | 2  | 0       | 1  | .796   | 4  | .827   | 4  |
| 288 |        |     | min | -3.445   | 2  | -6.338  | 2  | -4.247  | 4  | 0       | 1  | 637    | 2  | -1.189 | 2  |
| 289 |        | 5   | max | 1.103    | 4  | 4.409   | 4  | 3.398   | 2  | 0       | 1  | 0      | 1  | 0      | 1  |
| 290 |        |     | min | -3.445   | 2  | -6.342  | 2  | -4.247  | 4  | 0       | 1  | 0      | 1  | 0      | 1  |
| 291 | M30    | 1   | max | 3.842    | 2  | 4.192   | 2  | 4.212   | 4  | 0       | 1  | 2.509  | 2  | 3.136  | 2  |
| 292 |        |     | min | -1.086   | 4  | -6.655  | 4  | -3.345  | 2  | 0       | 1  | -3.159 | 4  | -4.998 | 4  |
| 293 |        | 2   | max | 3.842    | 2  | 4.187   | 2  | 4.212   | 4  | 0       | 1  | 1.881  | 2  | 2.351  | 2  |
| 294 |        |     | min | -1.086   | 4  | -6.66   | 4  | -3.345  | 2  | 0       | 1  | -2.369 | 4  | -3.75  | 4  |
| 295 |        | 3   | max | 3.842    | 2  | 4.182   | 2  | 4.212   | 4  | 0       | 1  | 1.254  | 2  | 1.566  | 2  |
| 296 |        |     | min | -1.086   | 4  | -6.665  | 4  | -3.345  | 2  | 0       | 1  | -1.579 | 4  | -2.501 | 4  |
| 297 |        | 4   | max | 3.842    | 2  | 4.177   | 2  | 4.212   | 4  | 0       | 1  | .627   | 2  | .783   | 2  |
| 298 |        |     | min | -1.086   | 4  | -6.669  | 4  | -3.345  | 2  | 0       | 1  | 79     | 4  | -1.251 | 4  |
| 299 |        | 5   | max | 3.842    | 2  | 4.172   | 2  | 4.212   | 4  | 0       | 1  | 0      | 1  | 0      | 1  |
| 300 |        |     | min | -1.086   | 4  | -6.674  | 4  | -3.345  | 2  | 0       | 1  | 0      | 1  | 0      | 1  |
| 301 | M31    | 11  | max | 3.551    | 2  | 4.428   | 4  | 4.247   | 4  | 0       | 1  | -2.272 | 1  | 3.314  | 4  |
| 302 |        | _   | min | .986     | 3  | 3.293   | 1  | 3.03    | 1  | 0       | 1  | -3.185 | 4  | 2.462  | 1  |
| 303 |        | 2   | max | 0.001    | 2  | 4.424   | 4  | 4.247   | 4  | 0       | 1  | -1.704 | 1  | 2.484  | 4  |
| 304 |        | _   | min | .986     | 3  | 3.288   | 1  | 3.03    | 1  | 0       | 1  | -2.389 |    |        | 1  |
| 305 |        | 3   | max | 0.00.    | 2  | 4.419   | 4  | 4.247   | 4  | 0       | 1  | -1.136 |    | 1.655  | 4  |
| 306 |        |     | min | .986     | 3  | 3.283   | 1  | 3.03    | 1  | 0       | 1  | -1.593 |    |        | 1  |
| 307 |        | 4   | max | 0.00.    | 2  | 4.414   | 4  | 4.247   | 4  | 0       | 1  | 568    | 1  | .827   | 4  |
| 308 |        | _   | min | .986     | 3  | 3.278   | 1  | 3.03    | 1  | 0       | 1  | 796    | 4  | .614   | 1  |
| 309 |        | 5   | max | 0.00.    | 2  | 4.409   | 4  | 4.247   | 4  | 0       | 1  | 0      | 1  | 0      | 1  |
| 310 |        |     | min | .986     | 3  | 3.273   | 1  | 3.03    | 1  | 0       | 1  | 0      | 1  | 0      | 1  |

# **Envelope Member Section Stresses**

|   | Member | Sec |     | Axial[ksi] | LC | y Shear[ | LC | z Shear[ | LC | y-Top[ksi] | LC | y-Bot[ksi] | LC | z-Top[ksi] | LC | z-Bot[ksi] | LC |
|---|--------|-----|-----|------------|----|----------|----|----------|----|------------|----|------------|----|------------|----|------------|----|
| 1 | M1     | 1   | max | .285       | 1  | .785     | 2  | 0        | 2  | 0          | 3  | 14.678     | 2  | 14.686     | 4  | 0          | 2  |
| 2 |        |     | min | .192       | 2  | 0        | 3  | 786      | 4  | -14.678    | 2  | 0          | 3  | 0          | 2  | -14.686    | 4  |
| 3 |        | 2   | max | .258       | 1  | .754     | 2  | 0        | 2  | 0          | 3  | 9.291      | 2  | 9.297      | 4  | 0          | 2  |

: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

|    | Member | Sec |     | Axial[ksi] | LC | v Shear[ | LC  | z Shear[  | LC | v-Top[ksi]   | LC | v-Bot[ksi] | LC | z-Top[ksi] | LC | z-Bot[ksi] | LC |
|----|--------|-----|-----|------------|----|----------|-----|-----------|----|--------------|----|------------|----|------------|----|------------|----|
| 4  |        |     | min | .175       | 2  | 0        | 3   | 754       | 4  | -9.291       | 2  | 0          | 3  | 0          | 2  | -9.297     | 4  |
| 5  |        | 3   | max | .232       | 1  | .723     | 2   | 0         | 2  | 0            | 3  | 4.123      | 2  | 4.127      | 4  | 0          | 2  |
| 6  |        |     | min | .158       | 2  | 0        | 3   | 723       | 4  | -4.123       | 2  | 0          | 3  | 0          | 2  | -4.127     | 4  |
| 7  |        | 4   | max | .026       | 1  | .036     | 1   | 0         | 2  | 0            | 3  | .138       | 1  | .141       | 3  | 0          | 2  |
| 8  |        |     | min | .017       | 2  | 0        | 3   | 036       | 3  | 138          | 1  | 0          | 3  | 0          | 2  | 141        | 3  |
| 9  |        | 5   | max | 0          | 1  | .004     | 1   | 0         | 2  | 0            | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 10 |        |     | min | 0          | 1  | 0        | 3   | 004       | 3  | 0            | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 11 | M2     | 1   | max | 1.006      | 2  | 078      | 4   | .465      | 4  | 5.458        | 2  | -1.367     | 4  | .002       | 1  | 0          | 4  |
| 12 |        |     | min | .54        | 3  | 35       | 2   | 0         | 1  | 1.367        | 4  | -5.458     | 2  | 0          | 4  | 002        | 1  |
| 13 |        | 2   | max | .99        | 2  | 078      | 4   | .465      | 4  | .354         | 2  | 234        | 4  | 6.773      | 4  | .009       | 1  |
| 14 |        |     | min | .521       | 3  | 35       | 2   | 0         | 1  | .234         | 4  | 354        | 2  | 009        | 1  | -6.773     | 4  |
| 15 |        | 3   | max | .974       | 2  | 078      | 4   | .465      | 4  | 899          | 4  | 4.75       | 2  | 13.547     | 4  | .02        | 1  |
| 16 |        |     | min | .502       | 3  | 35       | 2   | 0         | 1  | -4.75        | 2  | .899       | 4  | 02         | 1  | -13.547    | 4  |
| 17 |        | 4   | max | 1.491      | 2  | .673     | 2   | .004      | 1  | .656         | 3  | 1.93       | 2  | 9.549      | 4  | .017       | 1  |
| 18 |        |     | min | 1.079      | 3  | .012     | 3   | 698       | 4  | -1.93        | 2  | 656        | 3  | 017        | 1  | -9.549     | 4  |
| 19 |        | 5   | max | 1.464      | 2  | .635     | 2   | .004      | 1  | 7.569        | 2  | 833        | 3  | .038       | 1  | 0          | 4  |
| 20 |        |     | min | 1.035      | 3  | .012     | 3   | 621       | 4  | .833         | 3  | -7.569     | 2  | 0          | 4  | 038        | 1  |
| 21 | M3     | 1   | max | .99        | 2  | .037     | 4   | .424      | 4  | 5.4          | 2  | .641       | 4  | .011       | 1  | 0          | 4  |
| 22 |        |     | min | 318        | 4  | 346      | 2   | 001       | 1  | 641          | 4  | -5.4       | 2  | 0          | 4  | 011        | 1  |
| 23 |        | 2   | max | .974       | 2  | .037     | 4   | .462      | 4  | .357         | 2  | .098       | 4  | 6.454      | 4  | .011       | 1  |
| 24 |        |     | min | 334        | 4  | 346      | 2   | 001       | 1  | 098          | 4  | 357        | 2  | 011        | 1  | -6.454     | 4  |
| 25 |        | 3   | max | .959       | 2  | .037     | 4   | .499      | 4  | .444         | 4  | 4.686      | 2  | 13.454     | 4  | .032       | 1  |
| 26 |        |     | min | 349        | 4  | 346      | 2   | 001       | 1  | -4.686       | 2  | 444        | 4  | 032        | 1  | -13.454    | 4  |
| 27 |        | 4   | max | 1.48       | 2  | .652     | 2   | .005      | 1  | 215          | 3  | 1.973      | 2  | 9.848      | 4  | .025       | 1  |
| 28 |        |     | min | 724        | 4  | 013      | 4   | 695       | 4  | -1.973       | 2  | .215       | 3  | 025        | 1  | -9.848     | 4  |
| 29 |        | 5   | max | 1.465      | 2  | .652     | 2   | .005      | 1  | 7.527        | 2  | .532       | 4  | .05        | 1  | 0          | 4  |
| 30 |        |     | min | 74         | 4  | 013      | 4   | 657       | 4  | 532          | 4  | -7.527     | 2  | 0          | 4  | 05         | 1  |
| 31 | M4     | 1   | max | .542       | 4  | .079     | 3   | .465      | 4  | 4.555        | 2  | 1.397      | 3  | 0          | 4  | .002       | 1  |
| 32 | IVIT   |     | min | 766        | 2  | 268      | 2   | 0         | 2  | -1.397       | 3  | -4.555     | 2  | 002        | 1  | 0          | 4  |
| 33 |        | 2   | max | .526       | 4  | .079     | 3   | .465      | 4  | .38          | 2  | .242       | 3  | 6.773      | 4  | 005        | 2  |
| 34 |        |     | min | 782        | 2  | 305      | 2   | 0         | 2  | 242          | 3  | 38         | 2  | .005       | 2  | -6.773     | 4  |
| 35 |        | 3   | max | .511       | 4  | .079     | 3   | .465      | 4  | .913         | 3  | 4.34       | 2  | 13.547     | 4  | 01         | 2  |
| 36 |        |     | min | 798        | 2  | 343      | 2   | 0         | 2  | -4.34        | 2  | 913        | 3  | .01        | 2  | -13.547    | 4  |
| 37 |        | 4   | max | 1.103      | 4  | .686     | 2   | 003       | 2  | 65           | 4  | 2.216      | 2  | 9.549      | 4  | 01         | 2  |
| 38 |        |     | min | -1.101     | 2  | 014      | 4   | 698       | 4  | -2.216       | 2  | .65        | 4  | .01        | 2  | -9.549     | 4  |
| 39 |        | 5   | max | 1.077      | 4  | .611     | 2   | 003       | 2  | 7.203        | 2  | .852       | 4  | 0          | 4  | .038       | 1  |
| 40 |        | Ŭ   | min | -1.127     | 2  | 014      | 4   | 621       | 4  | 852          | 4  | -7.203     | 2  | 038        | 1  | 0          | 4  |
| 41 | M5     | 1   | max | 224        | 3  | 023      | 3   | .424      | 4  | 4.533        | 2  | 387        | 3  | 0          | 4  | .011       | 1  |
| 42 |        |     | min | 767        | 2  | 266      | 2   | .001      | 2  | .387         | 3  | -4.533     | 2  | 011        | 1  | 0          | 4  |
| 43 |        | 2   | max | 243        | 3  | 023      | 3   | .462      | 4  | .391         | 2  | 054        | 3  | 6.454      | 4  | 007        | 2  |
| 44 |        |     | min | 782        | 2  | 303      | 2   | .001      | 2  | .054         | 3  | 391        | 2  | .007       | 2  | -6.454     | 4  |
| 45 |        | 3   | max | 262        | 3  | 023      | 3   | .499      | 4  | 278          | 3  | 4.298      | 2  | 13.454     | 4  | 024        | 2  |
| 46 |        | Ŭ   | min | 798        | 2  | 34       | 2   | .001      | 2  | -4.298       | 2  | .278       | 3  | .024       | 2  | -13.454    |    |
| 47 |        | 4   | max | 534        | 3  | .664     | 2   | 004       | 2  | .335         | 4  | 2.246      | 2  | 9.848      | 4  | 019        | 2  |
| 48 |        |     | min | -1.112     | 2  | .011     | 3   | 694       | 4  | -2.246       | 2  | 335        | 4  | .019       | 2  | -9.848     | 4  |
| 49 |        | 5   | max | 552        | 3  | .626     | 2   | 004       | 2  | 7.153        | 2  | 369        | 3  | 0          | 4  | .05        | 1  |
| 50 |        |     | min | -1.127     | 2  | .011     | 3   | 657       | 4  | .369         | 3  | -7.153     | 2  | 05         | 1  | 0          | 4  |
| 51 | M6     | 1   | max | .212       | 4  | -1.209   | 3   | 037<br>18 | 3  | 0            | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 52 | IVIO   | Ė   | min | 0          | 1  | -2.158   | 2   | 313       | 2  | 0            | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 53 |        | 2   | max | .012       | 4  | .482     | 4   | .001      | 1  | -2.807       | 4  | 6.217      | 2  | .346       | 4  | .214       | 2  |
| 54 |        |     | min | 133        | 2  | .018     | 2   | 08        | 4  | -6.217       | 2  | 2.807      | 4  | 214        | 2  | 346        | 4  |
| 55 |        | 3   | max | .012       | 4  | .472     | 4   | .001      | 1  | 741          | 4  | 6.16       | 2  | 0          | 4  | .21        | 2  |
| JJ |        | J   | шах | .012       | +  | .712     | _ + | .001      |    | <i>1</i> + 1 | _  | 0.10       |    | U          | _  | .21        |    |

: CENTEK Engineering, INC. : tjl, cfc

: 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_\_

|     | Member | Sec      |      | Axial[ksi] | LC | y Shear[ | LC       | z Shear[ | LC | y-Top[ksi] | LC         | y-Bot[ksi] | LC | z-Top[ksi] | LC | z-Bot[ksi] | LC      |
|-----|--------|----------|------|------------|----|----------|----------|----------|----|------------|------------|------------|----|------------|----|------------|---------|
| 56  |        |          | min  | 133        | 2  | .008     | 2        | 08       | 4  | -6.16      | 2          | .741       | 4  | 21         | 2  | 0          | 4       |
| 57  |        | 4        | max  | .012       | 4  | .462     | 4        | .001     | 1  | 1.281      | 4          | 6.147      | 2  | 18         | 1  | .345       | 4       |
| 58  |        |          | min  | 133        | 2  | 002      | 2        | 08       | 4  | -6.147     | 2          | -1.281     | 4  | 345        | 4  | .18        | 1       |
| 59  |        | 5        | max  | 0          | 2  | 2.126    | 2        | .31      | 2  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 60  |        |          | min  | 183        | 4  | 676      | 4        | 192      | 4  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 61  | M7     | 1        | max  | .07        | 4  | .024     | 3        | .022     | 4  | .364       | 4          | 13         | 1  | 0          | 1  | 0          | 2       |
| 62  |        |          | min  | .017       | 2  | 044      | 2        | 0        | 1  | .13        | 1          | 364        | 4  | 0          | 2  | 0          | 1       |
| 63  |        | 2        | max  | .07        | 4  | .012     | 3        | .011     | 4  | .431       | 4          | .038       | 1  | .072       | 4  | 0          | 2       |
| 64  |        |          | min  | .017       | 2  | 055      | 2        | 0        | 1  | 038        | 1          | 431        | 4  | 0          | 2  | 072        | 4       |
| 65  |        | 3        | max  | .07        | 4  | 0        | 4        | 0        | 2  | .453       | 4          | .26        | 1  | .096       | 4  | 0          | 1       |
| 66  |        |          | min  | .017       | 2  | 065      | 2        | 0        | 1  | 26         | 1          | 453        | 4  | 0          | 1  | 096        | 4       |
| 67  |        | 4        | max  | .07        | 4  | 01       | 4        | 0        | 2  | .431       | 4          | .535       | 1  | .072       | 4  | 0          | 1       |
| 68  |        |          | min  | .017       | 2  | 075      | 2        | 011      | 4  | 535        | 1          | 431        | 4  | 0          | 1  | 072        | 4       |
| 69  |        | 5        | max  | .07        | 4  | 021      | 4        | 0        | 2  | .364       | 4          | .863       | 1  | 0          | 2  | 0          | 1       |
| 70  |        |          | min  | .017       | 2  | 086      | 2        | 022      | 4  | 863        | 1          | 364        | 4  | 0          | 1  | 0          | 2       |
| 71  | M8     | 1        | max  | 0          | 1  | 1.596    | 2        | .302     | 2  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 72  |        |          | min  | 183        | 4  | .467     | 3        | .171     | 3  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 73  |        | 2        | max  | .132       | 2  | .009     | 2        | .08      | 4  | 4.617      | 2          | 753        | 3  | .194       | 2  | .345       | 4       |
| 74  |        |          | min  | .011       | 3  | 462      | 4        | .011     | 1  | .753       | 3          | -4.617     | 2  | 345        | 4  | 194        | 2       |
| 75  |        | 3        | max  | .132       | 2  | 0        | 2        | .08      | 4  | 4.636      | 2          | 1.036      | 3  | .223       | 2  | 0          | 3       |
| 76  |        |          | min  | .011       | 3  | 472      | 4        | 0        | 2  | -1.036     | 3          | -4.636     | 2  | 0          | 3  | 223        | 2       |
| 77  |        | 4        | max  | .132       | 2  | 011      | 2        | .08      | 4  | 4.61       | 2          | 2.878      | 3  | .346       | 4  | 179        | 1       |
| 78  |        |          | min  | .011       | 3  | 482      | 4        | 01       | 2  | -2.878     | 3          | -4.61      | 2  | .179       | 1  | 346        | 4       |
| 79  |        | 5        | max  | .212       | 4  | 1.21     | 4        | .199     | 4  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 80  |        |          | min  | 0          | 2  | -1.593   | 2        | 305      | 2  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 81  | M9     | 1        | max  | .02        | 1  | .087     | 2        | 0        | 4  | 849        | 2          | 1.044      | 3  | .008       | 1  | 0          | 4       |
| 82  |        | <u> </u> | min  | 055        | 4  | .021     | 4        | 0        | 1  | -1.044     | 3          | .849       | 2  | 0          | 4  | 008        | 1       |
| 83  |        | 2        | max  | .02        | 1  | .077     | 2        | 0        | 4  | 493        | 2          | .964       | 3  | .004       | 1  | 0          | 4       |
| 84  |        |          | min  | 055        | 4  | .01      | 4        | 0        | 1  | 964        | 3          | .493       | 2  | 0          | 4  | 004        | 1       |
| 85  |        | 3        | max  | .02        | 1  | .067     | 2        | 0        | 4  | 181        | 2          | .938       | 3  | 0          | 1  | 0          | 1       |
| 86  |        | <b> </b> | min  | 055        | 4  | 0        | 4        | 0        | 1  | 938        | 3          | .181       | 2  | 0          | 1  | 0          | 1       |
| 87  |        | 4        | max  | .02        | 1  | .057     | 2        | 0        | 4  | .087       | 2          | .964       | 3  | 0          | 4  | .004       | 1       |
| 88  |        |          | min  | 055        | 4  | 012      | 3        | 0        | 1  | 964        | 3          | 087        | 2  | 004        | 1  | 0          | 4       |
| 89  |        | 5        | max  | .02        | 1  | .046     | 2        | 0        | 4  | .31        | 2          | 1.044      | 3  | 0          | 4  | .008       | 1       |
| 90  |        | <b> </b> | min  | 055        | 4  | 024      | 3        | 0        | 1  | -1.044     | 3          | 31         | 2  | 008        | 1  | 0          | 4       |
| 91  | M10    | 1        | max  | .004       | 1  | -1.367   | 3        | 1.064    | 2  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 92  |        | T.       | min  | 524        | 4  | -1.841   | 2        | .49      | 3  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 93  |        | 2        | max  | .443       | 2  | .545     | 4        | .228     | 4  | -3.174     | 4          | 5.305      | 2  | .77        | 2  | .983       | 4       |
| 94  |        | _        | min  | .022       | 3  | .016     | 2        | 019      | 1  | -5.305     | 2          | 3.174      | 4  | 983        | 4  | 77         | 2       |
| 95  |        | 3        | max  | .443       | 2  | .534     | 4        | .228     | 4  | 837        | 4          | 5.26       | 2  | .699       | 2  | 004        | 3       |
| 96  |        |          | min  | .022       | 3  | .005     | 2        | 019      | 1  | -5.26      | 2          | .837       | 4  | .004       | 3  | 699        | 2       |
| 97  |        | 4        | max  | .443       | 2  | .524     | 4        | .228     | 4  | 1.456      | 4          | 5.258      | 2  | .993       | 4  | 54         | 1       |
| 98  |        |          | min  | .022       | 3  | 005      | 2        | 019      | 1  | -5.258     | 2          | -1.456     | 4  | .54        | 1  | 993        | 4       |
| 99  |        | 5        | max  | .591       | 4  | 1.82     | 2        | .547     | 4  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 100 |        | +        | min  | 006        | 1  | 768      | 4        | -1.013   | 2  | 0          | 1          | 0          | 1  | 0          | 1  | 0          | 1       |
| 101 | M11    | 1        | max  | .017       | 2  | .641     | 2        | .022     | 4  | .381       | 4          | 5.66       | 2  | .051       | 1  | 0          | 4       |
| 102 | IVIII  |          | min  | 226        | 4  | .021     | 4        | 006      | 1  | -5.66      | 2          | 381        | 4  | 0          | 4  | 051        | 1       |
| 103 |        | 2        | max  | .017       | 2  | .631     | 2        | .011     | 4  | .447       | 4          | 2.905      | 2  | .072       | 4  | 023        | 2       |
| 104 |        |          | min  | 226        | 4  | .01      | 4        | 006      | 1  | -2.905     | 2          | 447        | 4  | .023       | 2  | 072        | 4       |
| 105 |        | 3        | max  | .017       | 2  | .62      | 2        | 0        | 4  | .47        | 4          | .265       | 1  | .023       | 4  | 0          | 1       |
| 106 |        |          | min  | 226        | 4  | 0        | 4        | 006      | 1  | 265        | 1          | 47         | 4  | 0          | 1  | 096        | 4       |
| 107 |        | 4        | max  |            | 2  | .61      | 2        | 005      | 2  | 2.471      | 2          | 47         | 3  | .072       | 4  | .025       | 1       |
| 107 |        | 1 4      | ппах | .017       |    | .01      | <u> </u> | 005      |    | 2.411      | <b>_</b> _ | 209        | J  | .072       | 4  | .020       | $\perp$ |

: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

|     | Member | Sec      |            | Axial[ksi] | LC | y Shear[ | LC | z Shear[ | LC | y-Top[ksi] | LC | y-Bot[ksi] | LC | z-Top[ksi] | LC | z-Bot[ksi] | LC |
|-----|--------|----------|------------|------------|----|----------|----|----------|----|------------|----|------------|----|------------|----|------------|----|
| 108 |        |          | min        | 226        | 4  | 012      | 3  | 011      | 4  | .289       | 3  | -2.471     | 2  | 025        | 1  | 072        | 4  |
| 109 |        | 5        | max        | .017       | 2  | .6       | 2  | 005      | 2  | 5.092      | 2  | 21         | 3  | 0          | 4  | .051       | 1  |
| 110 |        |          | min        | 226        | 4  | 025      | 3  | 022      | 4  | .21        | 3  | -5.092     | 2  | 051        | 1  | 0          | 4  |
| 111 | M12    | 1        | max        | .591       | 4  | 1.253    | 2  | 491      | 3  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 112 |        |          | min        | .005       | 2  | .531     | 3  | -1.021   | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 113 |        | 2        | max        | .031       | 4  | .005     | 2  | 005      | 2  | 3.619      | 2  | 858        | 3  | .993       | 4  | .639       | 2  |
| 114 |        |          | min        | 444        | 2  | 524      | 4  | 228      | 4  | .858       | 3  | -3.619     | 2  | 639        | 2  | 993        | 4  |
| 115 |        | 3        | max        | .031       | 4  | 005      | 2  | 016      | 2  | 3.619      | 2  | 1.173      | 3  | .005       | 4  | .686       | 2  |
| 116 |        |          | min        | 444        | 2  | 534      | 4  | 228      | 4  | -1.173     | 3  | -3.619     | 2  | 686        | 2  | 005        | 4  |
| 117 |        | 4        | max        | .031       | 4  | 015      | 2  | 028      | 2  | 3.575      | 2  | 3.257      | 3  | 713        | 1  | .983       | 4  |
| 118 |        |          | min        | 444        | 2  | 545      | 4  | 228      | 4  | -3.257     | 3  | -3.575     | 2  | 983        | 4  | .713       | 1  |
| 119 |        | 5        | max        | 003        | 2  | 1.368    | 4  | 1.073    | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 120 |        |          | min        | 524        | 4  | -1.232   | 2  | 542      | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 121 | M13    | 1        | max        | .206       | 4  | .025     | 3  | 0        | 4  | 5.234      | 2  | .949       | 3  | .033       | 1  | 0          | 4  |
| 122 |        |          | min        | .01        | 1  | 618      | 2  | 004      | 1  | 949        | 3  | -5.234     | 2  | 0          | 4  | 033        | 1  |
| 123 |        | 2        | max        | .206       | 4  | .012     | 3  | 0        | 4  | 2.537      | 2  | .87        | 3  | .016       | 1  | 0          | 4  |
| 124 |        |          | min        | .01        | 1  | 628      | 2  | 004      | 1  | 87         | 3  | -2.537     | 2  | 0          | 4  | 016        | 1  |
| 125 |        | 3        | max        | .206       | 4  | 0        | 4  | 0        | 4  | 205        | 2  | .843       | 3  | 0          | 1  | 0          | 1  |
| 126 |        |          | min        | .01        | 1  | 638      | 2  | 004      | 1  | 843        | 3  | .205       | 2  | 0          | 1  | 0          | 1  |
| 127 |        | 4        | max        | .206       | 4  | 01       | 4  | 0        | 4  | 86         | 4  | 2.992      | 2  | 0          | 4  | .016       | 1  |
| 128 |        |          | min        | .01        | 1  | 648      | 2  | 004      | 1  | -2.992     | 2  | .86        | 4  | 016        | 1  | 0          | 4  |
| 129 |        | 5        | max        | .206       | 4  | 02       | 4  | 0        | 4  | 927        | 4  | 5.823      | 2  | 0          | 4  | .033       | 1  |
| 130 |        |          | min        | .01        | 1  | 659      | 2  | 004      | 1  | -5.823     | 2  | .927       | 4  | 033        | 1  | 0          | 4  |
| 131 | M14    | 1        | max        | .253       | 4  | 2.357    | 2  | 1        | 3  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 132 |        |          | min        | 004        | 1  | 2.245    | 3  | 616      | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 133 |        | 2        | max        | .253       | 4  | 2.347    | 2  | 1        | 3  | 10.191     | 2  | -9.698     | 3  | 431        | 3  | 2.67       | 2  |
| 134 |        |          | min        | 004        | 1  | 2.232    | 3  | 616      | 2  | 9.698      | 3  | -10.191    | 2  | -2.67      | 2  | .431       | 3  |
| 135 |        | 3        | max        | 025        | 3  | 0        | 1  | 008      | 2  | 11.45      | 2  | -1.668     | 4  | 001        | 3  | 1.857      | 2  |
| 136 |        |          | min        | 2          | 2  | -1.402   | 4  | 41       | 4  | 1.668      | 4  | -11.45     | 2  | -1.857     | 2  | .001       | 3  |
| 137 |        | 4        | max        | .005       | 1  | 1.654    | 4  | .633     | 2  | 10.205     | 2  | 7.143      | 4  | .493       | 4  | 2.742      | 2  |
| 138 |        |          | min        | 309        | 4  | -2.35    | 2  | 114      | 4  | -7.143     | 4  | -10.205    | 2  | -2.742     | 2  | 493        | 4  |
| 139 |        | 5        | max        | .005       | 1  | 1.644    | 4  | .633     | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 140 |        |          | min        | 309        | 4  | -2.361   | 2  | 114      | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 141 | M15    | 1        | max        | .046       | 4  | .851     | 2  | .022     | 4  | 455        | 3  | 7.055      | 2  | 0          | 4  | .051       | 1  |
| 142 | WITO   | •        | min        | 002        | 2  | .021     | 4  | .005     | 2  | -7.055     | 2  | .455       | 3  | 051        | 1  | 0          | 4  |
| 143 |        | 2        | max        | .046       | 4  | .84      | 2  | .011     | 4  | 376        | 3  | 3.392      | 2  | .072       | 4  | .026       | 1  |
| 144 |        |          | min        | 002        | 2  | .01      | 4  | .005     | 2  | -3.392     | 2  | .376       | 3  | 026        | 1  | 072        | 4  |
| 145 |        | 3        | max        | .046       | 4  | .83      | 2  | .006     | 1  | .326       | 1  | .545       | 4  | .096       | 4  | 0          | 1  |
| 146 |        |          | min        | 002        | 2  | 0        | 4  | 0        | 4  | 545        | 4  | 326        | 1  | 0          | 1  | 096        | 4  |
| 147 |        | 4        | max        | .046       | 4  | .82      | 2  | .006     | 1  | 3.802      | 2  | .568       | 4  | .072       | 4  | 023        | 2  |
| 148 |        |          | min        | 002        | 2  | 012      | 3  | 011      | 4  | 568        | 4  | -3.802     | 2  | .023       | 2  | 072        | 4  |
| 149 |        | 5        | max        | .046       | 4  | .81      | 2  | .006     | 1  | 7.332      | 2  | .634       | 4  | .051       | 1  | 0          | 4  |
| 150 |        |          | min        | 002        | 2  | 025      | 3  | 022      | 4  | 634        | 4  | -7.332     | 2  | 0          | 4  | 051        | 1  |
| 151 | M16    | 1        | max        | 004        | 2  | -1.237   | 3  | .64      | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 152 | IVITO  | <u> </u> | min        | 309        | 4  | -1.662   | 2  | .1       | 3  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 153 |        | 2        | max        | 004        | 2  | -1.249   | 3  | .629     | 2  | -5.384     | 3  | 7.223      | 2  | 2.747      | 2  | 433        | 3  |
| 154 |        |          | min        | 309        | 4  | -1.672   | 2  | .029     | 3  | -7.223     | 2  | 5.384      | 3  | .433       | 3  | -2.747     | 2  |
| 155 |        | 3        | max        | .199       | 2  | 1.402    | 4  | .41      | 4  | 2.416      | 3  | 8.111      | 2  | 1.858      | 2  | .001       | 4  |
| 156 |        | <u> </u> | min        | 028        | 4  | 0        | 1  | 009      | 1  | -8.111     | 2  | -2.416     | 3  | 001        | 4  | -1.858     | 2  |
| 157 |        | 4        |            | .253       | 4  | 1.669    | 2  | .113     | 4  | 10.124     | 4  | 7.209      | 2  | 2.676      | 2  | .491       | 4  |
| 158 |        | 4        | max<br>min | .003       | 2  | -2.332   | 4  | 612      | 2  | -7.209     | 2  | -10.124    | 4  |            | 4  | -2.676     | 2  |
|     |        | F        |            |            | 4  |          |    |          |    |            |    |            |    | 491        |    |            |    |
| 159 |        | 5        | max        | .253       | 4  | 1.659    | 2  | .113     | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |

: CENTEK Engineering, INC.: tjl, cfc: 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_\_

|            | Member | Sec      |     | Axial[ksi]      | LC | y Shear[        | LC | z Shear[   | LC          | y-Top[ksi]    | LC | y-Bot[ksi] | LC | z-Top[ksi]  | LC | z-Bot[ksi]      | LC            |
|------------|--------|----------|-----|-----------------|----|-----------------|----|------------|-------------|---------------|----|------------|----|-------------|----|-----------------|---------------|
| 160        |        |          | min | .003            | 2  | -2.342          | 4  | 623        | 2           | 0             | 1  | 0          | 1  | 0           | 1  | 0               | 1             |
| 161        | M17    | 1        | max | 0               | 1  | .025            | 3  | .005       | 1           | 7.357         | 2  | 931        | 3  | 0           | 4  | .041            | 1             |
| 162        |        |          | min | 045             | 4  | 812             | 2  | 0          | 4           | .931          | 3  | -7.357     | 2  | 041         | 1  | 0               | 4             |
| 163        |        | 2        | max | 0               | 1  | .012            | 3  | .005       | 1           | 3.816         | 2  | -1.01      | 3  | 0           | 4  | .021            | 1             |
| 164        |        |          | min | 045             | 4  | 823             | 2  | 0          | 4           | 1.01          | 3  | -3.816     | 2  | 021         | 1  | 0               | 4             |
| 165        |        | 3        | max | 0               | 1  | 0               | 4  | .005       | 1           | 1.038         | 4  | 229        | 2  | 0           | 1  | 0               | 1             |
| 166        |        |          | min | 045             | 4  | 833             | 2  | 0          | 4           | .229          | 2  | -1.038     | 4  | 0           | 1  | 0               | 1             |
| 167        |        | 4        | max | 0               | 1  | 01              | 4  | .005       | 1           | 1.016         | 4  | 3.401      | 2  | .021        | 1  | 0               | 4             |
| 168        |        |          | min | 045             | 4  | 843             | 2  | 0          | 4           | -3.401        | 2  | -1.016     | 4  | 0           | 4  | 021             | 1             |
| 169        |        | 5        | max | 0               | 1  | 02              | 4  | .005       | 1           | .949          | 4  | 7.076      | 2  | .041        | 1  | 0               | 4             |
| 170        |        |          | min | 045             | 4  | 853             | 2  | 0          | 4           | -7.076        | 2  | 949        | 4  | 0           | 4  | 041             | 1             |
| 171        | M18    | 1        | max | .135            | 4  | -1.282          | 1  | 395        | 1           | 7.403         | 4  | .322       | 1  | 2.11        | 2  | -1.481          | 3             |
| 172        |        |          | min | 285             | 2  | -3.066          | 4  | 618        | 4           | 322           | 1  | -7.403     | 4  | 1.481       | 3  | -2.11           | 2             |
| 173        |        | 2        | max | .135            | 4  | -1.294          | 1  | 395        | 1           | -4.521        | 3  | 7.494      | 2  | .174        | 2  | .99             | 4             |
| 174        |        | _        | min | 285             | 2  | -3.076          | 4  | 618        | 4           | -7.494        | 2  | 4.521      | 3  | 99          | 4  | 174             | 2             |
| 175        |        | 3        | max | 0               | 4  | 0               | 2  | 0          | 1           | .003          | 1  | 002        | 4  | 0           | 1  | 0               | 4             |
| 176        |        | T .      | min | 0               | 1  | 0               | 3  | 0          | 1           | .002          | 4  | 003        | 1  | 0           | 4  | 0               | 1             |
| 177        |        | 4        | max | .292            | 2  | 3.076           | 4  | .618       | 4           | 9.621         | 2  | 5.903      | 4  | 153         | 1  | .99             | 4             |
| 178        |        |          | min | .118            | 3  | -2.327          | 2  | 447        | 2           | -5.903        | 4  | -9.621     | 2  | 99          | 4  | .153            | 1             |
| 179        |        | 5        | max | .292            | 2  | 3.066           | 4  | .618       | 4           | 7.403         | 4  | .632       | 1  | 1.686       | 4  | 2.112           | 2             |
| 180        |        | -        | min | .118            | 3  | -2.337          | 2  | 447        | 2           | 632           | 1  | -7.403     | 4  | -2.112      | 2  | -1.686          | 4             |
| 181        | M19    | 1        | max | .277            | 2  | 3.722           | 4  | .616       | 4           | 482           | 2  | 8.037      | 4  | -1.476      | 3  | 2.047           | 2             |
| 182        | IVITO  | <u> </u> | min | 135             | 4  | 2.232           | 1  | .376       | 1           | -8.037        | 4  | .482       | 2  | -2.047      | 2  | 1.476           | 3             |
| 183        |        | 2        |     | .277            | 2  | 3.712           | 4  | .616       | 4           | 9.606         | 2  | -7.681     | 3  | .987        | 4  | .181            | 2             |
| 184        |        |          | max | 135             |    | 2.219           | 1  | .376       | 1           | 7.681         | 3  | -9.606     | 2  | 181         | 2  | 987             | 4             |
| 185        |        | 3        | min | <u>135</u><br>0 | 1  | 0               | 3  |            | 1           | .003          | 3  | 002        | 2  | 0           | 4  | 96 <i>1</i>     | 1             |
| 186        |        | 3        | max | 0               | 4  | 0               | 2  | 0          | 1           | .003          | 2  | 002        | 3  | 0           | 1  | 0               | 4             |
|            |        | 1        | min |                 | 3  | _               | 2  | .43        | 2           |               |    | 7.477      |    | -           | _  | -               | $\overline{}$ |
| 187<br>188 |        | 4        | max | 119<br>27       | 2  | 1.693<br>-3.712 | 4  | 616        |             | 8.067         | 2  | -8.067     | 2  | .987<br>.16 | 1  | 16<br>987       | 4             |
|            |        | -        | min |                 | 3  |                 | 2  |            | 4           | -7.477        | 2  |            | 4  |             | _  |                 | -             |
| 189<br>190 |        | 5        | max | 119<br>27       | 2  | 1.682<br>-3.722 | 4  | .43<br>616 | 4           | 166<br>-8.037 | 4  | 8.037      | 2  | 2.045       | 4  | 1.681<br>-2.045 | 2             |
|            | N400   | 1        | min |                 | 3  |                 | 3  |            |             |               | 2  | .166       | _  | -1.681      | _  |                 | $\overline{}$ |
| 191<br>192 | M20    | 1        | max | 0               | 2  | .007            | 2  | 0          | 1           | 004           | 3  | .005       | 2  | 0           | 2  | 0               | 2             |
|            |        | 1        | min | 0               | _  | .006            | _  | 0          |             | 005           |    | .004       |    | 0           | -  | _               | -             |
| 193        |        | 2        | max | 0               | 3  | .003            | 3  | 0          | 4           | 0             | 1  | 0          | 4  | 0           | 2  | 0               | 4             |
| 194        |        | 2        | min | 0               | 2  | .003            | 2  | 0          | 1           | 0             | 4  | 0          | 1  | 0           | 4  | 0               | 2             |
| 195        |        | 3        | max | 0               | 3  | 0               | 4  | 0          | 1           | .003          | 3  | 002        | 2  | 0           | 2  | 0               | 3             |
| 196        |        | 1        | min | 0               | 2  | 0               | 1  | 0          | <del></del> | .002          | 2  | 003        | 3  | 0           | 3  | 0               | 2             |
| 197        |        | 4        | max | 0               | 3  | 003             | 4  | 0          | 4           | 0             | 3  | 0          | 3  | 0           | 1  | 0               | -             |
| 198        |        | -        | min | 0               | 2  | 003             | 1  | 0          | 1           | 0             | 2  | 0          |    | 0           |    | 0               | 4             |
| 199        |        | 5        | max | 0               | 3  | 006             | 4  | 0          | 4           | 004           | 4  | .005       | 1  | 0           | 4  | 0               | 1             |
| 200        | 1404   | 4        | min | 0               | 2  | 007             | 1  | 0          | 1           | 005           | 1  | .004       | 4  | 0           | 1  | 0               | 4             |
| 201        | M21    | 1        | max | 0               | 2  | .007            | 3  | 0          | 1           | 004           | 2  | .005       | 3  | 0           | 4  | 0               | 1             |
| 202        |        |          | min | 0               | 3  | .006            | 2  | 0          | 4           | 005           | 3  | .004       | 2  | 0           | 1  | 0               | 4             |
| 203        |        | 2        | max | 0               | 2  | .003            | 3  | 0          | 1           | 0             | 1  | 0          | 4  | 0           | 4  | 0               | 1             |
| 204        |        |          | min | 0               | 3  | .003            | 2  | 0          | 4           | 0             | 4  | 0          | 1  | 0           | 1  | 0               | 4             |
| 205        |        | 3        | max | 0               | 2  | 0               | 4  | 0          | 1           | .003          | 1  | 002        | 4  | 0           | 2  | 0               | 3             |
| 206        |        |          | min | 0               | 3  | 0               | 1  | 0          | 4           | .002          | 4  | 003        | 1  | 0           | 3  | 0               | 2             |
| 207        |        | 4        | max | 0               | 2  | 003             | 4  | 0          | 1           | 0             | 3  | 0          | 2  | 0           | 2  | 0               | 4             |
| 208        |        |          | min | 0               | 3  | 003             | 1  | 0          | 4           | 0             | 2  | 0          | 3  | 0           | 4  | 0               | 2             |
| 209        |        | 5        | max | 0               | 2  | 006             | 4  | 0          | 1           | 004           | 4  | .005       | 1  | 0           | 2  | 0               | 4             |
| 210        |        |          | min | 0               | 3  | 007             | 1  | 0          | 4           | 005           | 1  | .004       | 4  | 0           | 4  | 0               | 2             |
| 211        | M22    | 1        | max | 0               | 4  | 0               | 1  | 0          | 1           | 0             | 1  | 0          | 1  | 0           | 1  | 0               | 1             |

: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

|     | Member | Sec |     | Axial[ksi] | LC | y Shear[ | LC | z Shear[ | LC | y-Top[ksi] | LC | y-Bot[ksi] | LC | z-Top[ksi] | LC | z-Bot[ksi] | LC |
|-----|--------|-----|-----|------------|----|----------|----|----------|----|------------|----|------------|----|------------|----|------------|----|
| 212 |        |     | min | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 213 |        | 2   | max | 0          | 4  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 214 |        |     | min | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 215 |        | 3   | max | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 216 |        |     | min | 0          | 4  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 217 |        | 4   | max | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 218 |        |     | min | 0          | 4  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 219 |        | 5   | max | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 220 |        |     | min | 0          | 4  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 221 | M23    | 1   | max | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 222 |        |     | min | 0          | 3  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 223 |        | 2   | max | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 224 |        |     | min | 0          | 3  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 225 |        | 3   | max | 0          | 3  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 226 |        |     | min | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 227 |        | 4   | max | 0          | 3  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 228 |        |     | min | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 229 |        | 5   | max | 0          | 3  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 230 |        |     | min | 0          | 2  | 0        | 1  | 0        | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 231 | M24    | 1   | max | .143       | 2  | -1.652   | 3  | .438     | 4  | 5.178      | 2  | -3.91      | 3  | 609        | 1  | 1.035      | 4  |
| 232 |        |     | min | .049       | 3  | -2.188   | 2  | .258     | 1  | 3.91       | 3  | -5.178     | 2  | -1.035     | 4  | .609       | 1  |
| 233 |        | 2   | max | .143       | 2  | -1.653   | 3  | .438     | 4  | 3.885      | 2  | -2.933     | 3  | 457        | 1  | .776       | 4  |
| 234 |        |     | min | .049       | 3  | -2.19    | 2  | .258     | 1  | 2.933      | 3  | -3.885     | 2  | 776        | 4  | .457       | 1  |
| 235 |        | 3   | max | .143       | 2  | -1.654   | 3  | .438     | 4  | 2.591      | 2  | -1.956     | 3  | 304        | 1  | .518       | 4  |
| 236 |        |     | min | .049       | 3  | -2.191   | 2  | .258     | 1  | 1.956      | 3  | -2.591     | 2  | 518        | 4  | .304       | 1  |
| 237 |        | 4   | max | .143       | 2  | -1.656   | 3  | .438     | 4  | 1.296      | 2  | 979        | 3  | 152        | 1  | .259       | 4  |
| 238 |        |     | min | .049       | 3  | -2.193   | 2  | .258     | 1  | .979       | 3  | -1.296     | 2  | 259        | 4  | .152       | 1  |
| 239 |        | 5   | max | .143       | 2  | -1.657   | 3  | .438     | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 240 |        |     | min | .049       | 3  | -2.194   | 2  | .258     | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 241 | M25    | 1   | max | .141       | 2  | 1.128    | 4  | .429     | 4  | 5.064      | 2  | 2.659      | 4  | .692       | 2  | 1.013      | 4  |
| 242 |        |     | min | 051        | 4  | -2.14    | 2  | 293      | 2  | -2.659     | 4  | -5.064     | 2  | -1.013     | 4  | 692        | 2  |
| 243 |        | 2   | max | .141       | 2  | 1.126    | 4  | .429     | 4  | 3.799      | 2  | 1.993      | 4  | .519       | 2  | .76        | 4  |
| 244 |        |     | min | 051        | 4  | -2.141   | 2  | 293      | 2  | -1.993     | 4  | -3.799     | 2  | 76         | 4  | 519        | 2  |
| 245 |        | 3   | max | .141       | 2  | 1.125    | 4  | .429     | 4  | 2.534      | 2  | 1.328      | 4  | .346       | 2  | .506       | 4  |
| 246 |        |     | min | 051        | 4  | -2.143   | 2  | 293      | 2  | -1.328     | 4  | -2.534     | 2  | 506        | 4  | 346        | 2  |
| 247 |        | 4   | max | .141       | 2  | 1.124    | 4  | .429     | 4  | 1.267      | 2  | .663       | 4  | .173       | 2  | .253       | 4  |
| 248 |        |     | min | 051        | 4  | -2.144   | 2  | 293      | 2  | 663        | 4  | -1.267     | 2  | 253        | 4  | 173        | 2  |
| 249 |        | 5   | max | .141       | 2  | 1.122    | 4  | .429     | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 250 |        |     | min | 051        | 4  | -2.146   | 2  | 293      | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 251 | M26    | 1   | max | .054       | 4  | 1.57     | 2  | .29      | 2  | 4.028      | 4  | 3.704      | 2  | 1.035      | 4  | .685       | 2  |
| 252 |        |     | min | 129        | 2  | -1.702   | 4  | 438      | 4  | -3.704     | 2  | -4.028     | 4  | 685        | 2  | -1.035     | 4  |
| 253 |        | 2   | max | .054       | 4  | 1.569    | 2  | .29      | 2  | 3.022      | 4  | 2.777      | 2  | .776       | 4  | .514       | 2  |
| 254 |        |     | min | 129        | 2  | -1.703   | 4  | 438      | 4  | -2.777     | 2  | -3.022     | 4  | 514        | 2  | 776        | 4  |
| 255 |        | 3   | max | .054       | 4  | 1.567    | 2  | .29      | 2  | 2.015      | 4  | 1.85       | 2  | .518       | 4  | .343       | 2  |
| 256 |        |     | min | 129        | 2  | -1.704   | 4  | 438      | 4  | -1.85      | 2  | -2.015     | 4  | 343        | 2  | 518        | 4  |
| 257 |        | 4   | max | .054       | 4  | 1.566    | 2  | .29      | 2  | 1.008      | 4  | .925       | 2  | .259       | 4  | .171       | 2  |
| 258 |        |     | min | 129        | 2  | -1.706   | 4  | 438      | 4  | 925        | 2  | -1.008     | 4  | 171        | 2  | 259        | 4  |
| 259 |        | 5   | max | .054       | 4  | 1.565    | 2  | .29      | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 260 |        |     | min | 129        | 2  | -1.707   | 4  | 438      | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 261 | M27    | 1   | max | 045        | 3  | 1.575    | 2  | 255      | 1  | -2.03      | 3  | 3.715      | 2  | 1.013      | 4  | 603        | 1  |
| 262 |        |     | min | 127        | 2  | .862     | 3  | 429      | 4  | -3.715     | 2  | 2.03       | 3  | .603       | 1  | -1.013     | 4  |
| 263 |        | 2   | max | 045        | 3  | 1.574    | 2  | 255      | 1  | -1.521     | 3  | 2.785      | 2  | .76        | 4  | 452        | 1  |

: CENTEK Engineering, INC.: tjl, cfc: 13305 / AT&T CT2117

: CL&P # 783 - Mast

TEK Engineering, INC.

Checked By:\_\_\_

Oct 6, 2014

|     | Member | Sec |     | Axial[ksi] | LC | y Shear[ | LC | z Shear[ | LC | y-Top[ksi] | LC | y-Bot[ksi] | LC | z-Top[ksi] | LC | z-Bot[ksi] | LC |
|-----|--------|-----|-----|------------|----|----------|----|----------|----|------------|----|------------|----|------------|----|------------|----|
| 264 |        |     | min | 127        | 2  | .86      | 3  | 429      | 4  | -2.785     | 2  | 1.521      | 3  | .452       | 1  | 76         | 4  |
| 265 |        | 3   | max | 045        | 3  | 1.572    | 2  | 255      | 1  | -1.013     | 3  | 1.856      | 2  | .506       | 4  | 301        | 1  |
| 266 |        |     | min | 127        | 2  | .859     | 3  | 429      | 4  | -1.856     | 2  | 1.013      | 3  | .301       | 1  | 506        | 4  |
| 267 |        | 4   | max | 045        | 3  | 1.571    | 2  | 255      | 1  | 506        | 3  | .928       | 2  | .253       | 4  | 151        | 1  |
| 268 |        |     | min | 127        | 2  | .858     | 3  | 429      | 4  | 928        | 2  | .506       | 3  | .151       | 1  | 253        | 4  |
| 269 |        | 5   | max | 045        | 3  | 1.569    | 2  | 255      | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 270 |        |     | min | 127        | 2  | .856     | 3  | 429      | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 271 | M28    | 1   | max | 13         | 3  | -1.819   | 1  | 857      | 1  | 4.556      | 4  | -4.304     | 1  | 2.879      | 4  | -2.024     | 1  |
| 272 |        |     | min | 493        | 2  | -1.925   | 4  | -1.218   | 4  | 4.304      | 1  | -4.556     | 4  | 2.024      | 1  | -2.879     | 4  |
| 273 |        | 2   | max | 13         | 3  | -1.82    | 1  | 857      | 1  | 3.418      | 4  | -3.23      | 1  | 2.159      | 4  | -1.518     | 1  |
| 274 |        |     | min | 493        | 2  | -1.926   | 4  | -1.218   | 4  | 3.23       | 1  | -3.418     | 4  | 1.518      | 1  | -2.159     | 4  |
| 275 |        | 3   | max | 13         | 3  | -1.821   | 1  | 857      | 1  | 2.279      | 4  | -2.154     | 1  | 1.439      | 4  | -1.012     | 1  |
| 276 |        |     | min | 493        | 2  | -1.928   | 4  | -1.218   | 4  | 2.154      | 1  | -2.279     | 4  | 1.012      | 1  | -1.439     | 4  |
| 277 |        | 4   | max | 13         | 3  | -1.823   | 1  | 857      | 1  | 1.14       | 4  | -1.077     | 1  | .72        | 4  | 506        | 1  |
| 278 |        |     | min | 493        | 2  | -1.929   | 4  | -1.218   | 4  | 1.077      | 1  | -1.14      | 4  | .506       | 1  | 72         | 4  |
| 279 |        | 5   | max | 13         | 3  | -1.824   | 1  | 857      | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 280 |        |     | min | 493        | 2  | -1.931   | 4  | -1.218   | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 281 | M29    | 1   | max | .145       | 4  | 1.281    | 4  | .983     | 2  | 4.329      | 2  | 3.02       | 4  | 2.903      | 4  | 2.323      | 2  |
| 282 |        |     | min | 454        | 2  | -1.829   | 2  | -1.228   | 4  | -3.02      | 4  | -4.329     | 2  | -2.323     | 2  | -2.903     | 4  |
| 283 |        | 2   | max | .145       | 4  | 1.28     | 4  | .983     | 2  | 3.248      | 2  | 2.264      | 4  | 2.177      | 4  | 1.742      | 2  |
| 284 |        |     | min | 454        | 2  | -1.83    | 2  | -1.228   | 4  | -2.264     | 4  | -3.248     | 2  | -1.742     | 2  | -2.177     | 4  |
| 285 |        | 3   | max | .145       | 4  | 1.278    | 4  | .983     | 2  | 2.166      | 2  | 1.509      | 4  | 1.452      | 4  | 1.161      | 2  |
| 286 |        |     | min | 454        | 2  | -1.832   | 2  | -1.228   | 4  | -1.509     | 4  | -2.166     | 2  | -1.161     | 2  | -1.452     | 4  |
| 287 |        | 4   | max | .145       | 4  | 1.277    | 4  | .983     | 2  | 1.083      | 2  | .754       | 4  | .726       | 4  | .581       | 2  |
| 288 |        |     | min | 454        | 2  | -1.833   | 2  | -1.228   | 4  | 754        | 4  | -1.083     | 2  | 581        | 2  | 726        | 4  |
| 289 |        | 5   | max | .145       | 4  | 1.275    | 4  | .983     | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 290 |        |     | min | 454        | 2  | -1.835   | 2  | -1.228   | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 291 | M30    | 1   | max | .507       | 2  | 1.212    | 2  | 1.218    | 4  | 4.556      | 4  | 2.859      | 2  | 2.286      | 2  | 2.879      | 4  |
| 292 |        |     | min | 143        | 4  | -1.925   | 4  | 967      | 2  | -2.859     | 2  | -4.556     | 4  | -2.879     | 4  | -2.286     | 2  |
| 293 |        | 2   | max | .507       | 2  | 1.211    | 2  | 1.218    | 4  | 3.418      | 4  | 2.143      | 2  | 1.715      | 2  | 2.159      | 4  |
| 294 |        |     | min | 143        | 4  | -1.926   | 4  | 967      | 2  | -2.143     | 2  | -3.418     | 4  | -2.159     | 4  | -1.715     | 2  |
| 295 |        | 3   | max | .507       | 2  | 1.21     | 2  | 1.218    | 4  | 2.279      | 4  | 1.428      | 2  | 1.143      | 2  | 1.439      | 4  |
| 296 |        |     | min | 143        | 4  | -1.928   | 4  | 967      | 2  | -1.428     | 2  | -2.279     | 4  | -1.439     | 4  | -1.143     | 2  |
| 297 |        | 4   | max | .507       | 2  | 1.208    | 2  | 1.218    | 4  | 1.14       | 4  | .713       | 2  | .572       | 2  | .72        | 4  |
| 298 |        |     | min | 143        | 4  | -1.929   | 4  | 967      | 2  | 713        | 2  | -1.14      | 4  | 72         | 4  | 572        | 2  |
| 299 |        | 5   | max | .507       | 2  | 1.207    | 2  | 1.218    | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 300 |        |     | min | 143        | 4  | -1.931   | 4  | 967      | 2  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 301 | M31    | 1   | max | .468       | 2  | 1.281    | 4  | 1.228    | 4  | -2.244     | 1  | 3.02       | 4  | -2.071     | 1  | 2.903      | 4  |
| 302 |        |     | min | .13        | 3  | .952     | 1  | .876     | 1  | -3.02      | 4  | 2.244      | 1  | -2.903     | 4  | 2.071      | 1  |
| 303 |        | 2   | max | .468       | 2  | 1.28     | 4  | 1.228    | 4  | -1.682     | 1  | 2.264      | 4  | -1.553     | 1  | 2.177      | 4  |
| 304 |        |     | min | .13        | 3  | .951     | 1  | .876     | 1  | -2.264     | 4  | 1.682      | 1  | -2.177     | 4  | 1.553      | 1  |
| 305 |        | 3   | max | .468       | 2  | 1.278    | 4  | 1.228    | 4  | -1.12      | 1  | 1.509      | 4  | -1.035     | 1  | 1.451      | 4  |
| 306 |        |     | min | .13        | 3  | .95      | 1  | .876     | 1  | -1.509     | 4  | 1.12       | 1  | -1.451     | 4  | 1.035      | 1  |
| 307 |        | 4   | max | .468       | 2  | 1.277    | 4  | 1.228    | 4  | 56         | 1  | .754       | 4  | 518        | 1  | .726       | 4  |
| 308 |        |     | min | .13        | 3  | .948     | 1  | .876     | 1  | 754        | 4  | .56        | 1  | 726        | 4  | .518       | 1  |
| 309 |        | 5   | max | .468       | 2  | 1.275    | 4  | 1.228    | 4  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |
| 310 |        |     | min | .13        | 3  | .947     | 1  | .876     | 1  | 0          | 1  | 0          | 1  | 0          | 1  | 0          | 1  |



: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_\_

# **Envelope Joint Reactions**

|    | Joint   |     | X [k]   | LC | Y [k]  | LC | Z [k]   | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|---------|----|--------|----|---------|----|-----------|----|-----------|----|-----------|----|
| 1  | N35     | max | 985     | 3  | 6.677  | 4  | -2.961  | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 2  |         | min | -3.736  | 2  | 6.326  | 1  | -4.212  | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 3  | N36     | max | 1.103   | 4  | 6.363  | 2  | 3.398   | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 4  |         | min | -3.445  | 2  | -4.408 | 4  | -4.246  | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 5  | N37     | max | 1.086   | 4  | 6.677  | 4  | 3.345   | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 6  |         | min | -3.842  | 2  | -4.153 | 2  | -4.212  | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 7  | N38     | max | 986     | 3  | -3.26  | 1  | -3.03   | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 8  |         | min | -3.551  | 2  | -4.408 | 4  | -4.246  | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 9  | N27     | max | 1.086   | 2  | 7.58   | 2  | 1.514   | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 10 |         | min | .373    | 3  | 5.728  | 3  | .891    | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 11 | N28     | max | 1.068   | 2  | 7.413  | 2  | 1.482   | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 12 |         | min | 387     | 4  | -3.88  | 4  | -1.012  | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 13 | N29     | max | .98     | 2  | 5.901  | 4  | 1.514   | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 14 |         | min | 412     | 4  | -5.413 | 2  | -1.002  | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 15 | N30     | max | .963    | 2  | -2.96  | 3  | 1.482   | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 16 |         | min | .344    | 3  | -5.429 | 2  | .882    | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 17 | Totals: | max | 0       | 4  | 11.758 | 1  | 0       | 2  |           |    |           |    |           |    |
| 18 |         | min | -10.477 | 2  | 8.579  | 4  | -10.924 | 4  |           |    |           |    |           |    |

# **Envelope Joint Displacements**

|    | Joint |     | X [in] | LC | Y [in] | LC | Z [in] | LC | X RotationLC  | Y RotationLC | Z Rotation LC |
|----|-------|-----|--------|----|--------|----|--------|----|---------------|--------------|---------------|
| 1  | N1    | max | .42    | 2  | 024    | 2  | 1.547  | 4  | 5.868e-3 4    | 9.612e-5 1   | 1.945e-8 4    |
| 2  |       | min | 0      | 4  | 034    | 3  | 0      | 1  | 6.324e-6 2 -  | -6.462e-8 4  | -4.93e-3 2    |
| 3  | N2    | max | 1.892  | 2  | 025    | 2  | 3.169  | 4  | 1.147e-2 4    | 9.612e-5 1   | 1.954e-8 4    |
| 4  |       | min | 0      | 4  | 035    | 3  | 0      | 2  | 6.354e-6 2 -  | -6.462e-8 4  | -1.053e-2 2   |
| 5  | N3    | max | 0      | 4  | 025    | 4  | 0      | 2  | 2.199e-6 1    | 0 3          | -4.492e-4 4   |
| 6  |       | min | 002    | 2  | 053    | 2  | 001    | 4  | -5.014e-3 4 - | -1.856e-6 2  | -1.423e-3 2   |
| 7  | N4    | max | 0      | 3  | .012   | 4  | 0      | 1  | 7.589e-6 1    | 3.05e-5 4    | 2.007e-4 4    |
| 8  |       | min | 002    | 2  | 052    | 2  | 001    | 4  | -4.812e-3 4   | 2.512e-6 1   | -1.41e-3 2    |
| 9  | N5    | max | 0      | 3  | .041   | 2  | 0      | 1  | 7.147e-7 2    | 0 3          | 4.614e-4 3    |
| 10 |       | min | 002    | 2  | 025    | 3  | 001    | 4  | -5.014e-3 4 - | -1.856e-6 2  | -1.223e-3 2   |
| 11 | N6    | max | 0      | 4  | .041   | 2  | 0      | 2  | -5.35e-6 2    | 2.721e-6 2   | -1.162e-4 3   |
| 12 |       | min | 002    | 2  | .008   | 3  | 001    | 4  | -4.812e-3 4   | -3.05e-5 4   | -1.223e-3 2   |
| 13 | N7    | max | .006   | 2  | 027    | 4  | .004   | 4  | 1.026e-2 4    | 1.881e-5 1   | -4.114e-4 4   |
| 14 |       | min | 0      | 4  | 058    | 2  | 0      | 2  | -1.866e-5 1   | 0 4          | -2.583e-3 2   |
| 15 | N8    | max | .005   | 2  | .014   | 4  | .004   | 4  | 1.01e-2 4     | 3.049e-5 4   | 2.086e-4 4    |
| 16 |       | min | 0      | 3  | 057    | 2  | 0      | 1  | -2.046e-5 1   | 1.245e-6 2   | -2.542e-3 2   |
| 17 | N9    | max | .006   | 2  | .044   | 2  | .004   | 4  | 1.026e-2 4    | 1.881e-5 1   | 4.165e-4 3    |
| 18 |       | min | 0      | 3  | 028    | 3  | 0      | 1  | 1.195e-5 2    | 0 4          | -2.36e-3 2    |
| 19 | N10   | max | .005   | 2  | .044   | 2  | .004   | 4  | 1.01e-2 4     | 3.743e-6 1   | -1.33e-4 3    |
| 20 |       | min | 0      | 4  | .009   | 3  | 0      | 2  | 1.399e-5 2 -  | -3.051e-5 4  | -2.329e-3 2   |
| 21 | N11   | max | .405   | 2  | 031    | 4  | 1.542  | 4  | 2.033e-2 4    | 8.653e-5 1   | 4.78e-4 4     |
| 22 |       | min | 0      | 3  | 062    | 2  | 003    | 1  | -2.723e-5 1 - | -5.659e-8 4  | -2.782e-3 2   |
| 23 | N12   | max | .399   | 2  | .016   | 4  | 1.542  | 4  | 2.045e-2 4    | 8.81e-5 1    | -1.823e-4 3   |
| 24 |       | min | 0      | 4  | 061    | 2  | 004    | 1  | -3.419e-5 1   | 2.718e-5 3   | -2.769e-3 2   |
| 25 | N13   | max | .405   | 2  | .048   | 2  | 1.542  | 4  | 2.033e-2 4    | 8.653e-5 1   | -4.748e-4 3   |
| 26 |       | min | 0      | 4  | 031    | 3  | .002   | 2  | 1.472e-5 2 -  | -5.659e-8 4  | -2.972e-3 2   |
| 27 | N14   | max | .399   | 2  | .048   | 2  | 1.542  | 4  | 2.045e-2 4    | 8.81e-5 1    | 2.727e-4 4    |
| 28 |       | min | 0      | 3  | .011   | 3  | .002   | 2  | 2.257e-5 2 -  | -3.056e-5 4  | -2.957e-3 2   |



: CENTEK Engineering, INC. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

# **Envelope Joint Displacements (Continued)**

|    | Joint       |        | X [in] | LC | Y [in] | LC | Z [in] | LC | X Rotation | .LC | Y Rotation LC | Z Rotation | LC |
|----|-------------|--------|--------|----|--------|----|--------|----|------------|-----|---------------|------------|----|
| 29 | N15         | max    | .42    | 2  | 038    | 4  | 1.542  | 4  | 1.598e-3   | 4   | 8.938e-5 4    | 1.267e-3   | 4  |
| 30 |             | min    | 0      | 3  | 143    | 2  | 003    | 1  | -1.47e-3   | 2   | -1.551e-4 2   | -2.566e-3  | 2  |
| 31 | N16         | max    | .419   | 2  | 0      | 4  | 1.542  | 4  | 2.029e-3   | 4   | 3.251e-4 2    | -5.437e-4  | 3  |
| 32 |             | min    | 0      | 4  | 143    | 2  | 004    | 1  | 1.438e-3   | 1   | 7.88e-5 3     | -2.562e-3  | 2  |
| 33 | N17         | max    | .42    | 2  | .105   | 2  | 1.542  | 4  | 1.598e-3   | 4   | -7.857e-5 3   | -1.248e-3  | 3  |
| 34 |             | min    | 0      | 4  | 044    | 3  | .002   | 2  | 8.041e-4   | 1   | -1.549e-4 2   | -3.039e-3  | 2  |
| 35 | N18         | max    | .419   | 2  | .105   | 2  | 1.542  | 4  | 2.029e-3   | 4   | 3.249e-4 2    | 7.84e-4    | 4  |
| 36 |             | min    | 0      | 3  | 011    | 3  | .002   | 2  | -1.047e-3  | 2   | -8.985e-5 4   | -3.035e-3  | 2  |
| 37 | N19         | max    | .42    | 2  | 068    | 2  | 1.547  | 4  | 5.868e-3   | 4   | 9.612e-5 1    | 1.982e-8   | 4  |
| 38 |             | min    | 0      | 4  | 081    | 3  | 001    | 1  | 6.324e-6   | 2   | -6.456e-8 4   | -4.93e-3   | 2  |
| 39 | N20         | max    | .42    | 2  | .02    | 2  | 1.547  | 4  | 5.868e-3   | 4   | 9.612e-5 1    | 1.907e-8   | 4  |
| 40 |             | min    | 0      | 4  | 081    | 3  | 0      | 2  | 6.324e-6   | 2   | -6.467e-8 4   | -4.93e-3   | 2  |
| 41 | N21         | max    | .419   | 2  | .029   | 4  | 1.547  | 4  | 5.868e-3   | 4   | 9.612e-5 1    | 1.916e-8   | 4  |
| 42 |             | min    | 0      | 4  | 073    | 1  | 001    | 1  | 6.324e-6   | 2   | -6.456e-8 4   |            | 2  |
| 43 | N22         | max    | .419   | 2  | .029   | 4  | 1.547  | 4  | 5.868e-3   | 4   | 9.612e-5 1    | 1.974e-8   | 4  |
| 44 |             | min    | 0      | 4  | .005   | 1  | 0      | 2  | 6.324e-6   | 2   | -6.467e-8 4   | -4.93e-3   | 2  |
| 45 | N23         | max    | 0      | 3  | 011    | 4  | 0      | 2  | 1.963e-3   | 2   | 5.476e-5 4    |            | 4  |
| 46 |             | min    | 0      | 2  | 026    | 2  | 001    | 4  | 9.473e-4   | 4   | -6.698e-5 2   |            |    |
| 47 | N24         | max    | 0      | 4  | .006   | 4  | 0      | 1  | 4.705e-4   | 4   | 6.554e-5 2    | 4.027e-4   | 4  |
| 48 |             | min    | 0      | 2  | 026    | 2  | 001    | 4  | -1.939e-3  | 2   | 4.911e-5 3    |            |    |
| 49 | N25         | max    | 0      | 4  | .02    | 2  | 0      | 1  | 9.622e-4   | 3   | -4.9e-5 3     | 9.521e-4   | 3  |
| 50 |             | min    | 0      | 2  | 011    | 3  | 001    | 4  | -1.46e-3   | 2   | -6.649e-5 2   |            |    |
| 51 | N26         | max    | 0      | 3  | .02    | 2  | 0      | 2  | 1.462e-3   | 2   | 6.515e-5 2    | -2.289e-4  |    |
| 52 |             | min    | 0      | 2  | .004   | 3  | 001    | 4  | 2.974e-4   | 3   | -5.447e-5 4   |            | 2  |
| 53 | N27         | max    | 0      | 3  | 0      | 3  | 0      | 1  | 1.963e-3   | 2   | 1.217e-4 4    | -1.187e-3  |    |
| 54 | · · · · · · | min    | 0      | 2  | 0      | 2  | 0      | 4  | 9.473e-4   | 4   | -2.242e-5 2   |            |    |
| 55 | N28         | max    | 0      | 4  | 0      | 4  | 0      | 2  | 4.705e-4   | 4   | 1.2e-4 4      | 5.745e-4   | 4  |
| 56 | 0           | min    | 0      | 2  | 0      | 2  | 0      | 4  | -1.939e-3  |     | 1.816e-5 1    |            |    |
| 57 | N29         | max    | 0      | 4  | 0      | 2  | 0      | 2  | 9.622e-4   | 3   | -1.967e-5 1   | 1.205e-3   | 3  |
| 58 |             | min    | 0      | 2  | 0      | 4  | 0      | 4  | -1.46e-3   | 2   | -1.217e-4 4   |            |    |
| 59 | N30         | max    | 0      | 3  | 0      | 2  | 0      | 1  | 1.462e-3   | 2   | 2.075e-5 2    | -3.6e-4    | 3  |
| 60 |             | min    | 0      | 2  | 0      | 3  | 0      | 4  | 2.974e-4   | 3   | -1.2e-4 4     |            | 2  |
| 61 | N31         | max    | 0      | 2  | 012    | 4  | .003   | 4  | 1.679e-3   | 2   | 2.326e-4 2    | -9.7e-4    | 4  |
| 62 |             | min    | 0      | 3  | 034    | 2  | 0      | 2  | 1.056e-3   | 4   | -1.548e-4 4   |            |    |
| 63 | N32         | max    | 0      | 2  | .006   | 4  | .004   | 4  | 5.185e-4   | 4   | -1.425e-4 3   | 4.586e-4   | 4  |
| 64 | .102        | min    | 0      | 4  | 034    | 2  | 0      | 1  | -1.654e-3  | _   | -2.092e-4 2   |            |    |
| 65 | N33         | max    | 0      | 2  | .028   | 2  | .003   | 4  | 1.075e-3   | 3   | 2.331e-4 2    | 9.884e-4   | 3  |
| 66 | 1400        | min    | 0      | 4  | 012    | 3  | 0      |    |            |     | 1.396e-4 3    |            |    |
| 67 | N34         | max    | 0      | 2  | .028   | 2  | .004   | 4  | 1.142e-3   |     | 1.582e-4 4    |            |    |
| 68 | 1404        | min    | 0      | 3  | .004   | 3  | 0      | 2  | 3.238e-4   |     | -2.097e-4 2   |            | _  |
| 69 | N35         | max    | 0      | 2  | 0      | 1  | 0      | 4  | 1.679e-3   |     | 8.513e-5 2    |            |    |
| 70 | 1400        | min    | 0      | 3  | 0      | 4  | 0      | 1  | 1.056e-3   |     | -3.41e-4 4    |            |    |
| 71 | N36         | max    | 0      | 2  | 0      | 4  | 0      | 4  | 5.185e-4   |     | -4.905e-5 1   | 6.538e-4   |    |
| 72 | 1400        | min    | 0      | 4  | 0      | 2  | 0      | 2  | -1.654e-3  |     | -3.459e-4 4   |            |    |
| 73 | N37         | max    | 0      | 2  | 0      | 2  | 0      | 4  | 1.075e-3   |     | 3.409e-4 4    | 1.274e-3   |    |
| 74 | 1407        | min    | 0      | 4  | 0      | 4  | 0      | 2  | -1.137e-3  |     | 7.915e-5 1    | -3.117e-3  |    |
| 75 | N38         | max    | 0      | 2  | 0      | 4  | 0      | 4  | 1.142e-3   |     | 3.459e-4 4    |            |    |
| 76 | 1430        | min    | 0      | 3  | 0      | 1  | 0      | 1  | 3.238e-4   |     | -5.924e-5 2   |            |    |
| 10 |             | 111111 | U      | J  | U      |    | U      |    | 3.2306-4   | J   | -J.JZ46-U Z   | -J. 116-J  | _  |



: CENTEK Engineering, INC.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_\_

# Envelope AISC 14th(360-10): ASD Steel Code Checks

|    | Member | Shape    | Code Check | Loc[  | .LC | Sh   | Loc[ft] |   | LC | Pnc/o   | Pnt/ | Mny  | .Mnz | Eqn  |
|----|--------|----------|------------|-------|-----|------|---------|---|----|---------|------|------|------|------|
| 1  | M1     | HSS12.5X | .442       | 0     | 4   | .052 | 0       |   | 4  | 502.346 | 548  | 173  | 173  | 1 H1 |
| 2  | M2     | HSS6x6x6 | .544       | 10.9  | . 4 | .045 | 11.177  | z | 4  | 110.514 | 208  | 36.2 | 36.2 | H1   |
| 3  | M3     | HSS6x6x6 | .517       | 10.9  | . 4 | .043 | 11.177  | z | 4  | 110.514 | 208  | 36.2 | 36.2 | H1   |
| 4  | M4     | HSS6x6x6 | .544       | 10.9  | . 4 | .046 | 11.177  | у | 2  | 110.514 | 208  | 36.2 | 36.2 | H1   |
| 5  | M5     | HSS6x6x6 | .517       | 10.9  | . 4 | .043 | 11.177  | z | 4  | 110.514 | 208  | 36.2 | 36.2 | H1   |
| 6  | M6     | HSS6x6x6 | .216       | .917  | 2   | .315 | .917    | у | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 7  | M7     | HSS6x6x6 | .026       | 5.5   | 1   | .006 | 5.5     | y | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 8  | M8     | HSS6x6x6 | .165       | 4.583 | 2   | .229 | 0       | y | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 9  | M9     | HSS6x6x6 | .032       | 5.5   | 3   | .005 | 0       | y | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 10 | M10    | HSS6x6x6 | .254       | .917  | 2   | .268 | .917    | У | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 11 | M11    | HSS6x6x6 | .173       | 0     | 2   | .040 | 0       | y | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 12 | M12    | HSS6x6x6 | .201       | 4.583 | 2   | .185 | 4.583   | У | 3  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 13 | M13    | HSS6x6x6 | .177       | 5.5   | 2   | .041 | 5.5     | y | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 14 | M14    | HSS6x6x6 | .555       | 3.552 | 2   | .308 | 3.495   | У | 4  | 207.244 | 208  | 36.2 | 36.2 | H1   |
| 15 | M15    | HSS6x6x6 | .223       | 5.5   | 2   | .053 | 0       | y | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 16 | M16    | HSS6x6x6 | .459       | 3.552 | 4   | .308 | 2.005   | У | 4  | 207.244 | 208  | 36.2 | 36.2 | H1   |
| 17 | M17    | HSS6x6x6 | .224       | 0     | 2   | .053 | 5.5     | y | 2  | 197.374 | 208  | 36.2 | 36.2 | H1   |
| 18 | M18    | HSS6x6x6 | .706       | 3.552 | 4   | .499 | 3.552   | V | 4  | 207.244 | 208  | 36.2 | 36.2 | H3-6 |
| 19 | M19    | HSS6x6x6 | .890       | 1.948 | 4   | .573 | 5.5     | y | 4  | 207.244 | 208  | 36.2 | 36.2 | H3-6 |
| 20 | M20    | HSS6x6x6 | .000       | 0     | 3   | .000 | 0       | y | 3  | 207.919 | 208  | 36.2 | 36.2 | H1   |
| 21 | M21    | HSS6x6x6 | .000       | 0     | 3   | .000 | 0       | y | 3  | 207.919 | 208  | 36.2 | 36.2 | H1   |
| 22 | M24    | HSS6x6x6 | .180       | 0     | 2   | .133 | .75     | y | 2  | 208.572 | 208  | 36.2 | 36.2 | H1   |
| 23 | M25    | HSS6x6x6 | .177       | 0     | 2   | .130 | .75     | y | 2  | 208.572 | 208  | 36.2 | 36.2 | H1   |
| 24 | M26    | HSS6x6x6 | .154       | 0     | 4   | .103 | .75     | y | 4  | 208.572 | 208  | 36.2 | 36.2 | H1   |
| 25 | M27    | HSS6x6x6 | .135       | 0     | 2   | .095 | 0       | y | 2  | 208.572 | 208  | 36.2 | 36.2 | H1   |
| 26 | M28    | HSS6x6x6 | .228       | 0     | 4   | .117 | .75     | y | 4  | 208.572 | 208  | 36.2 | 36.2 | H1   |
| 27 | M29    | HSS6x6x6 | .209       | 0     | 2   | .111 | .75     | y | 2  | 208.572 | 208  | 36.2 | 36.2 | H1   |
| 28 | M30    | HSS6x6x6 | .228       | 0     | 4   | .117 | .75     | y | 4  | 208.572 | 208  | 36.2 | 36.2 | H1   |
| 29 | M31    | HSS6x6x6 | .182       | 0     | 4   | .078 | 0       | y | 4  | 208.572 | 208  | 36.2 | 36.2 | H1   |



: CENTEK Engineering, INC.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

# **Joint Reactions**

|    | LC | Joint Label | X [k]  | Y [k]     | Z [k]   | MX [k-ft] | MY [k-ft] | MZ [k-ft] |
|----|----|-------------|--------|-----------|---------|-----------|-----------|-----------|
| 1  | 1  | N35         | -3.363 | 6.326     | -2.961  | 0         | 0         | 0         |
| 2  | 1  | N36         | -3.026 | 6.055     | 3.031   | 0         | 0         | 0         |
| 3  | 1  | N37         | -3.45  | -2.998    | 2.96    | 0         | 0         | 0         |
| 4  | 1  | N38         | -3.113 | -3.26     | -3.03   | 0         | 0         | 0         |
| 5  | 1  | N27         | .963   | 7.248     | .891    | 0         | 0         | 0         |
| 6  | 1  | N28         | .941   | 6.933     | 895     | 0         | 0         | 0         |
| 7  | 1  | N29         | .861   | -4.203    | 879     | 0         | 0         | 0         |
| 8  | 1  | N30         | .841   | -4.343    | .882    | 0         | 0         | 0         |
| 9  | 1  | Totals:     | -9.346 | 11.758    | 0       |           |           |           |
| 10 | 1  | COG (ft):   | X: 0   | Y: 19.179 | Z: .154 |           |           |           |



: CENTEK Engineering, INC.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_

# Joint Reactions

|    | LC | Joint Label | X [k]   | Y [k]     | Z [k]   | MX [k-ft] | MY [k-ft] | MZ [k-ft] |
|----|----|-------------|---------|-----------|---------|-----------|-----------|-----------|
| 1  | 2  | N35         | -3.736  | 6.475     | -3.337  | 0         | 0         | 0         |
| 2  | 2  | N36         | -3.445  | 6.363     | 3.398   | 0         | 0         | 0         |
| 3  | 2  | N37         | -3.842  | -4.153    | 3.345   | 0         | 0         | 0         |
| 4  | 2  | N38         | -3.551  | -4.257    | -3.404  | 0         | 0         | 0         |
| 5  | 2  | N27         | 1.086   | 7.58      | 1.008   | 0         | 0         | 0         |
| 6  | 2  | N28         | 1.068   | 7.413     | -1.012  | 0         | 0         | 0         |
| 7  | 2  | N29         | .98     | -5.413    | -1.002  | 0         | 0         | 0         |
| 8  | 2  | N30         | .963    | -5.429    | 1.005   | 0         | 0         | 0         |
| 9  | 2  | Totals:     | -10.477 | 8.579     | 0       |           |           |           |
| 10 | 2  | COG (ft):   | X: 0    | Y: 18.427 | Z: .085 |           |           |           |



: CENTEK Engineering, INC.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

# Joint Reactions

|    | LC | Joint Label | X [k] | Y [k]     | Z [k]   | MX [k-ft] | MY [k-ft] | MZ [k-ft] |
|----|----|-------------|-------|-----------|---------|-----------|-----------|-----------|
| 1  | 3  | N35         | 985   | 6.481     | -3.804  | 0         | 0         | 0         |
| 2  | 3  | N36         | .986  | -3.371    | -3.818  | 0         | 0         | 0         |
| 3  | 3  | N37         | .985  | 6.482     | -3.804  | 0         | 0         | 0         |
| 4  | 3  | N38         | 986   | -3.371    | -3.818  | 0         | 0         | 0         |
| 5  | 3  | N27         | .373  | 5.728     | 1.363   | 0         | 0         | 0         |
| 6  | 3  | N28         | 344   | -2.96     | 1.328   | 0         | 0         | 0         |
| 7  | 3  | N29         | 373   | 5.729     | 1.363   | 0         | 0         | 0         |
| 8  | 3  | N30         | .344  | -2.96     | 1.328   | 0         | 0         | 0         |
| 9  | 3  | Totals:     | 0     | 11.758    | -9.864  |           |           |           |
| 10 | 3  | COG (ft):   | X: 0  | Y: 19.179 | Z: .154 |           |           |           |



: CENTEK Engineering, INC.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

### Joint Reactions

|    | LC | Joint Label | X [k]  | Y [k]     | Z [k]   | MX [k-ft] | MY [k-ft] | MZ [k-ft] |
|----|----|-------------|--------|-----------|---------|-----------|-----------|-----------|
| 1  | 4  | N35         | -1.086 | 6.677     | -4.212  | 0         | 0         | 0         |
| 2  | 4  | N36         | 1.103  | -4.408    | -4.246  | 0         | 0         | 0         |
| 3  | 4  | N37         | 1.086  | 6.677     | -4.212  | 0         | 0         | 0         |
| 4  | 4  | N38         | -1.103 | -4.408    | -4.246  | 0         | 0         | 0         |
| 5  | 4  | N27         | .412   | 5.901     | 1.514   | 0         | 0         | 0         |
| 6  | 4  | N28         | 387    | -3.88     | 1.482   | 0         | 0         | 0         |
| 7  | 4  | N29         | 412    | 5.901     | 1.514   | 0         | 0         | 0         |
| 8  | 4  | N30         | .387   | -3.88     | 1.482   | 0         | 0         | 0         |
| 9  | 4  | Totals:     | 0      | 8.579     | -10.924 |           |           |           |
| 10 | 4  | COG (ft):   | X: 0   | Y: 18.427 | Z: .085 |           |           |           |







| CENTER Engineering, INC |  |
|-------------------------|--|
| tjl, cfc                |  |
| 13305 / AT&T CT2117     |  |

CL&P # 783 - Mast LC #1 Loads Oct 6, 2014 at 10:03 AM







| CENTER Engineering, INC |  |
|-------------------------|--|
| tjl, cfc                |  |
| 13305 / AT&T CT2117     |  |

CL&P # 783 - Mast LC #2 Loads Oct 6, 2014 at 10:03 AM TIA-EIA.r3d







| CENTEK Engineering, INC. |                   |                         |
|--------------------------|-------------------|-------------------------|
| tjl, cfc                 | CL&P # 783 - Mast | Oct 6, 2014 at 10:03 AM |
| 13305 / AT&T CT2117      | LC #3 Loads       | TIA-EIA.r3d             |







| CENTER Engineering, INC. |
|--------------------------|
| tjl, cfc                 |
| 13305 / AT&T CT2117      |

CL&P # 783 - Mast LC #4 Loads Oct 6, 2014 at 10:03 AM TIA-EIA.r3d





# AISC 14th(360-10): ASD Code Check Direct Analysis Method

| Max Bending Check | 0.442 | Max Shear Check | 0.052 (s) |
|-------------------|-------|-----------------|-----------|
| Location          | 0 ft  | Location        | 0 ft      |
| Equation          | H1-1b | Max Defl Ratio  | L/98      |

Bending Flange Compact Compression Flange Non-Slender Compact Compression Web Non-Slender

#### **Seismic Provisions**

| Fy<br>Pnc/om | 42 ksi<br>502.346 k | Lb      | y-y<br><b>13.25 ft</b> | z-z<br>13.25 ft |
|--------------|---------------------|---------|------------------------|-----------------|
|              |                     |         |                        |                 |
| Pnt/om       | 548.263 k           | KL/r    | 37.737                 | 37.737          |
| Mny/om       | 173.114 k-ft        |         |                        |                 |
| Mnz/om       | 173.114 k-ft        | I Com   | n Flance               | 42.2E.#         |
| Vny/om       | 164.479 k           |         | p Flange               | 13.25 ft        |
| Vnz/om       | 164.479 k           | Warp L  | •                      | NC              |
| Tn/om        | 163.034 k-ft        | L-torqu | ie                     | 13.25 ft        |
| Cb           | 1                   | Tau_b   |                        | 1               |



Location:

Rev. 4: 10/6/14

Anchor Bolt and Baseplate Analysis

13.5-ft Antenna Mast

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

## Anchor Bolt and Base Plate Analysis:

#### Input Data:

Tower Reactions:

Overturning Moment = OM := 76·ft·kips (Input From RisaTower)

Shear Force = Shear := 8.6 kips (Input From RisaTower)

Axial Force = Axial := 4.2-kips (Input From RisaTower)

Anchor Bolt Data:

Use ASTM A325

Number of Anchor Bolts = N := 16 (User Input)

Diameter of Bolt Circle =  $D_{bc} := 15.25 \cdot in$  (User Input)

Bolt Ultimate Strength =  $F_{IJ} := 120 \cdot ksi$  (User Input)

Bolt Yield Strength =  $F_v := 92 \cdot ksi$  (User Input)

Bolt Modulus = E := 29000·ksi (User Input)

Diameter of Flange Bolts = D := 0.75·in (User Input)

Threads per Inch = n := 10 (User Input)

Base Plate Data:

Use ASTM A36

Plate Yield Strength =  $Fy_{bp} := 36 \cdot ksi$  (User Input)

Base Plate Diameter =  $D_{bp} := 18 \cdot in$  (User Input)

Outer Pole Diameter =  $D_{pole} := 12.5 \cdot in$  (User Input)

Base Plate Data:

Weld Grade E70XX (User Input)

Weld Yield Stress =  $F_{yw} := 70 \cdot ksi$  (User Input)

Weld Size =  $sw := 0.5 \cdot in$  (User Input)



Location:

Rev. 4: 10/6/14

Anchor Bolt and Baseplate Analysis

13.5-ft Antenna Mast

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

(User Input)

#### **Geometric Layout Data:**

Distance from Bolts to Centroid of Pole:

 $d_1 := 7.625in$  (User Input)

 $d_2 := 5in$  (User Input)

 $d_3 := 2in$  (User Input)

Critical Distances For Bending in Plate:

 $ma_1 := 1.375in$  (User Input)

Effective Width of Baseplate for Bending =  $B_{eff} = 12.75in$ 



#### ANCHOR BOLT AND PLATE GEOMETRY



Location:

Rev. 4: 10/6/14

Anchor Bolt and Baseplate Analysis

13.5-ft Antenna Mast

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

### **Anchor Bolt Analysis:**

#### Calculated Anchor Bolt Properties:

Polar Moment of Inertia = 
$$I_p := \left[ (d_1)^2 \cdot 8 + (d_2)^2 \cdot 4 + (d_3)^2 \cdot 4 \right] = 581.125 \cdot in^2$$

Gross A rea of Bolt = 
$$A_g := \frac{\pi}{4} \cdot D^2 = 0.442 \cdot in^2$$

Net Area of Bolt = 
$$A_n := \frac{\pi}{4} \cdot \left( D - \frac{0.9743 \cdot in}{n} \right)^2 = 0.334 \cdot in^2$$

Net Diameter = 
$$D_n := \frac{2 \cdot \sqrt{A_n}}{\sqrt{\pi}} = 0.653 \cdot in$$

Radius of Gyration of Bolt = 
$$r := \frac{D_n}{4} = 0.163 \cdot in$$

Section Modulus of Bolt = 
$$S_{\chi} \coloneqq \frac{\pi \cdot D_{\eta}^{3}}{32} = 0.027 \cdot i \eta^{3}$$

Check Anchar Bolt Tension Force:

$$\text{Maximum Tensile Force =} \qquad \qquad \text{T}_{\mbox{Max}} := \mbox{OM} \cdot \frac{\mbox{d}_1}{\mbox{I}_p} - \frac{\mbox{Axial}}{\mbox{N}} = 11.7 \cdot \mbox{kips}$$

Allowable Tensile Force = 
$$T_{ALL} := \frac{\left(0.75 \cdot A_g \cdot F_u\right)}{2} = 19.9 \cdot \text{kips}$$

Bolt Tension % of Capacity = 
$$\frac{T_{Max}}{T_{ALL}} = 58.9.\%$$

Condition1 := if 
$$\left(\frac{T_{Max}}{T_{ALL}} \le 1.00, "OK", "Overstressed"\right)$$

Condition1 = "OK"



Location:

Anchor Bolt and Baseplate Analysis

13.5-ft Antenna Mast

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 13305.000

Rev. 4: 10/6/14

#### **Base Plate Analysis:**

$$C_1 := OM \cdot \frac{d_1}{I_p} + \frac{Axial}{N} = 12.2 \cdot kips$$

Maximum Bending Moment in Plate =

$$\mathsf{M}_{bp} := 4 \cdot \mathsf{C}_1 \cdot \mathsf{ma}_1 = 67.3 \cdot \mathsf{in} \cdot \mathsf{kip}$$

$$S_{bp} := \frac{14.9605 \cdot in^4}{3.875 \cdot in} = 3.9 \cdot in^3$$

Maximum Bending Stress in Plate =

 $f_{bp} := \frac{M_{bp}}{S_{bp}} = 17.4 \cdot ksi$ 

Allowable Bending Stress in Plate =

$$F_{bp} := 0.75 \cdot Fy_{bp} = 27 \cdot ksi$$

Plate Bending Stress % of Capacity =

$$\frac{f_{bp}}{F_{bp}} = 64.5 \cdot \%$$

$$Condition2 := if \left( \frac{f_{bp}}{F_{bp}} < 1.00, "Ok", "Overstressed" \right)$$

Condition2 = "Ok"

#### Antenna Mast to Base Plate Weld Check:

$$F_W := 0.3 \cdot F_{VW} = 21 \cdot ksi$$

Weld Area =

$$A_w := 20.4 \cdot in^2$$

Weld Moment of Inertia =

$$I_w := 477 \cdot in^4$$
 (User Input)





Section Modulus of Weld =

$$S_w := \frac{I_w}{c} = 54.51 \cdot \text{in}^3$$

$$f_W := \frac{OM}{S} + \frac{Shear}{A} = 17.15 \cdot ksi$$

 $f_{W} := \frac{OM}{S_{W}} + \frac{Shear}{A_{W}} = 17.15 \cdot ksi$ Weld Stress =

Condition3 :=  $if(f_W < F_W, "OK", "Overstressed")$ 

Condition3 = "OK"

Branford, CT 06405

Subject:

Connection of Mast to CL&P Tower # 783

Location:

Prepared by: T.J.L. Checked by: C.F.C.

Meriden, CT

Rev. 4: 10/6/14 Job No. 13305.000

### **Mast Connection to CL&P Tower:**

F: (203) 488-8587

#### Check Angle to Tower Leg Conneciton:

Reactions:

Vertical y-dir = Vertical := 6.5-kips (Input From Risa-3D LC #2)

Horizontal x-dir = Horizontal<sub>x</sub>:= 3.8·kips (Input From Risa-3D LC #2)

Horizontal z-dir = Horizontal<sub>7</sub> := 3.4-kips (Input From Risa-3D LC #2)

Bolt Data:

Bolt Type = ASTM A325 (User Input)

Bolt Diameter = D := 0.75·in (User Input)

Area of Bolt =  $A_b := \frac{1}{4} \cdot \pi \cdot D^2 = 0.442 \cdot in^2$  (User Input)

Number of Bolts =  $N_h := 6$  (User Input)

Nominal Tensile Stress =  $F_{nt} := 90 \cdot ksi$  (User Input)

Nominal Shear Stress =  $F_{nv} := 54 \cdot ksi$  (User Input)

Factor of Safety =  $\Omega := 2.0$  (User Input)

 $\text{Shear Stress} = \qquad \qquad f_{\text{IV}} \coloneqq \frac{\sqrt{\left. \text{Horizontal}_{\text{Z}}^{2} + \text{Vertical}^{2}}}{N_{\text{h}} \cdot A_{\text{h}}} = 2.8 \cdot \text{ksi}$ 

Allowable Shear Strength =  $R_{nv} := \frac{F_{nv}}{\Omega} = 27 \cdot ksi$ 

Bolt Shear % of Capacity =  $\frac{f_{rv}}{R_{nv}} = 10.25 \cdot \%$ 

Check Bolt Shear =  $Bolt\_Shear := if \left( \frac{f_{\text{rV}}}{R_{\text{NV}}} \le 1.00 \,, \text{"OK"} \,, \text{"Overstressed"} \right)$ 

Bolt\_Shear = "OK"

Modified Nominal Tensile Strength =  $F'_{nt} := \left(1.3 \cdot F_{nt} - \frac{\Omega \cdot F_{nt}}{F_{nv}} \cdot f_{rv}\right) = 107.775 \cdot ksi$ 

Allowable Tensile Strength =  $R_{nt} := \frac{F'_{nt}}{Q} = 53.888 \cdot ksi$ 

Tension Stress =  $f_{rt} \coloneqq \frac{\text{Horizontal}_X}{N_b \cdot A_b} = 1.4 \cdot \text{ksi}$ 

Bolt Tenison % of Capacity =  $\frac{f_{rt}}{R_{nt}} = 2.66 \cdot \%$ 

Check Bolt Tension =  $Bolt\_Tension := if \left( \frac{f_{rt}}{R_{nt}} \le 1.00, "OK", "Overstressed" \right)$ 

Bolt\_Tension = "OK"



Load Analysis of Powermount on CL&P

Structure #783

 Centered on Solutions
 www.centekens.com

 63-2 North Branford Road
 P: (203) 488-0580

 Branford, CT 06405
 F: (203) 488-8587

Location: Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Rev. 3: 8/26/14 Job No. 13305.000

#### **Basic Components**

Heavy Wind Pressure = p := 4.00 psf (User Input NESC 2007 Figure 250-1 & Table 250-1)

Basic Windspeed = V := 110 mph (User Input NESC 2007 Figure 250-2(e))

Radial Ice Thickness = Ir := 0.50 in (User Input) Radial Ice Density = Id := 56.0 pcf (User Input)

#### Factors for Extreme Wind Calculation

Elevation of Top of PCS Mast Above Grade = TME := 90 ft (User Input)

Multiplier Gust Response Factor = m := 1.25 (User Input - Only for NESC Extreme wind case)

NESC Factor = kv := 1.43 (User Input from NESC 2007 Table 250-3 equation)

Importance Factor = | | := 1.0 (User Input from NESC 2007 Section 250.C.2)

Velocity Pressure Coefficient =  $Kz := 2.01 \cdot \left(\frac{TME}{900}\right)^{\frac{2}{9.5}} = 1.238$  (NESC 2007 Table 250-2)

Exposure Factor = Es :=  $0.346 \left[ \frac{33}{(0.67 \cdot \text{TME})} \right]^{\frac{1}{7}} = 0.317$  (NESC 2007 Table 250-3)

Response Term =  $Bs := \frac{1}{\left(1 + 0.375 \cdot \frac{TME}{220}\right)} = 0.867$  (NESC 2007 Table 250-3)

Gust Response Factor =  $Grf := \frac{\left[1 + \left(\frac{1}{2.7 \cdot \text{Es} \cdot \text{Bs}} \frac{1}{2}\right)\right]}{\text{kv}^2} = 0.879$  (NESC 2007 Table 250-3)

Wind Pressure =  $qz := 0.00256 \cdot Kz \cdot V^2 \cdot Grf \cdot I = 33.7$  psf (NESC 2007 Section 250.C.2)

#### Shape Factors

NUS Design Criteria Issued April 12, 2007

#### Overload Factors NU Design Criteria Table

#### Overload Factors for Wind Loads:

NESC Heavy Loading =2.5(User Input)Apply in Risa-3D AnalysisNESC Extreme Loading =1.0(User Input)Apply in Risa-3D Analysis

#### Overload Factors for Vertical Loads:

NESC Heavy Loading =1.5(User Input)Apply in Risa-3D AnalysisNESC Extreme Loading =1.0(User Input)Apply in Risa-3D Analysis



Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 3: 8/26/14

Load Analysis of Powermount on CL&P

Structure #783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 13305.000

#### Development of Wind & Ice Load on PCS Mast

**PCS Mast Data:** (HSS12.5"x0.625")

Mast Shape = Round (User Input)

Mast Diameter =  $D_{\text{mast}} = 12.5$ in (User Input)

Mast Length =  $L_{mast} := 13.5$ ft (User Input)

 $t_{\mbox{mast}} \coloneqq 0.625$ Mast Thickness = (User Input)

#### Wind Load (NESC Extreme)

 $A_{\text{mast}} := \frac{D_{\text{mast}}}{12} = 1.042$ Mast Projected Surface Area = sf/ft

Total Mast Wind Force (Below NU Structure) =  $qz \cdot Cd_R \cdot A_{mast} = 46$ BLC 5

#### Wind Load (NESE Heavy)

 $AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot Ir\right)}{12} = 1.125$ Mast Projected Surface Area w/ Ice = sf/ft

Total Mast Wind Force w/ Ice = BLC 4  $p \cdot Cd_R \cdot AICE_{mast} = 6$ plf

#### Gravity Loads (without ice)

plf BLC 1 Weight of the mast = Self Weight (Computed internally by Risa-3D)

#### Gravity Loads (ice only)

 $Ai_{mast} := \frac{\pi}{4} \left[ \left( D_{mast} + Ir \cdot 2 \right)^2 - D_{mast}^2 \right] = 20.4$ Ice Area per Linear Foot = sq in

 $W_{ICEmast} := Id \cdot \frac{Ai_{mast}}{144} = 8$ Weight of Ice on Mast = BLC 3



Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 3: 8/26/14

Load Analysis of Powermount on CL&P

Structure #783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 13305.000

#### Development of Wind & Ice Load on Antennas

(AT&T) Antenna Data:

Antenna Model = CCI HPA-65R-BUU-H8

Antenna Shape = Flat (User Input)

Antenna Height =  $L_{ant} = 92.4$ (User Input)

Antenna Width =  $W_{ant} = 14.8$ in (User Input)

Antenna Thickness =  $T_{ant} = 7.4$ in (User Input)

Antenna Weight =  $WT_{ant} := 78$ lbs (User Input)

Number of Antennas =  $N_{ant} = 6$ (User Input)

#### Gravity Load (without ice)

Weight of All Antennas =

 $Wt_{ant1} := WT_{ant} \cdot N_{ant} = 468$ 

BLC 2

BLC 3

BLC 4

lbs

sf

lhs

Gravity Load (ice only)

Volum e of Each Antenna =  $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 10120$ cu in

 $V_{ice} := (L_{ant} + 2 \cdot Ir)(W_{ant} + 2 \cdot Ir)(T_{ant} + 2 \cdot Ir) - V_{ant} = 2276$ Volum e of Ice on Each Antenna = cu in

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 74$ Weight of Ice on Each Antenna = lbs

Weight of Ice on All Antennas = Wt<sub>ice.ant1</sub> := W<sub>ICEant</sub>·N<sub>ant</sub> = 443

#### Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

> $SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 10.2$ Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ I ce = A<sub>ICEant</sub> := SA<sub>ICEant</sub>·N<sub>ant</sub> = 61.5 sf

Total Antenna Wind Force w/ Ice =

Wind Load (NESC Extreme)

### $Fi_{ant1} := p \cdot Cd_F \cdot A_{ICEant} = 394$

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

> $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 9.5$ Surface Area for One Antenna = sf

Antenna Projected Surface Area =  $A_{ant} := SA_{ant} \cdot N_{ant} = 57$ sf

Total Antenna Wind Force =  $F_{ant1} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 3842$ lbs BLC 5



Centered on Solutions www.centekeng.com 53-3 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Load Analysis of Powermount on CL&P

Structure #783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 13305.000

#### Development of Wind & Ice Load on Antennas

Antenna Data:

(AT&T)

Antenna Model =

Rev. 3: 8/26/14

CCLOPA-65R-LCULH8

Antenna Shape =

Flat

(User Input)

Antenna Height =

 $L_{ant} = 92.7$ 

(User Input)

Antenna Width =

 $W_{ant} = 14.4$ 

(User Input)

Antenna Thickness =

 $T_{ant} = 7.0$ 

in

(User Input)

Antenna Weight =

 $WT_{ant} = 100$ 

lbs (User Input)

Number of Antennas =  $N_{ant} := 3$  (User Input)

#### Gravity Load (without ice)

Weight of All Antennas =

 $Wt_{ant1} := WT_{ant} \cdot N_{ant} = 300$ 

BLC 2

Gravity Load (ice only)

Volum e of Each Antenna =

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 9344$ 

cu in

lbs

Volum e of Ice on Each Antenna =

 $V_{ice} := (L_{ant} + 2 \cdot Ir)(W_{ant} + 2 \cdot Ir)(T_{ant} + 2 \cdot Ir) - V_{ant} = 2200$ 

cu in

Weight of Ice on Each Antenna =

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 71$ 

lbs

sf

sf

Weight of Ice on All Antennas =

 $Wt_{ice.ant1} := W_{ICEant} \cdot N_{ant} = 214$ 

BLC 3 lbs

#### Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna w/ Ice =

 $SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 10$ 

Antenna Projected Surface Area w/ I ce =

 $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 30.1$ 

BLC 4

### Total Antenna Wind Force w/ Ice =

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna =

Antenna Projected Surface Area =

 $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 9.3$ 

 $Fi_{ant1} := p \cdot Cd_F \cdot A_{ICEant} = 192$ 

 $A_{ant} := SA_{ant} \cdot N_{ant} = 27.8$ 

sf

Total Antenna Wind Force =

 $F_{ant1} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 1875$ 

BLC 5



Centered on Solutions www.centekepa.com 63.2 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 3: 8/26/14

Load Analysis of Powermount on CL&P

Structure #783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 13305.000

#### Development of Wind & Ice Load on TMA's

TMA Data: (AT&T)

TMA Model = CCI BPDB7823VG12A

TMA Shape = Flat (User Input)

TMA Height =  $L_{TMA} := 14.25$ in (User Input)

TMA Width =  $W_{TMA} := 11.03$ (User Input) in

TMA Thickness =  $T_{TMA} := 4.11$ in (User Input)

TMA Weight =  $WT_{TMA} := 30$ (User Input)

Number of TMA's =  $N_{TMA} := 18$ (User Input)

Gravity Load (without ice)

Weight of All TMA's =

 $Wt_{TMA1} := WT_{TMA} \cdot N_{TMA} = 540$ 

BLC 2

Gravity Load (ice only)

Volum e of Each TMA =  $V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 646$  cu in

lhs

lbs

Volume of Ice on Each TMA =

 $V_{ice} := (L_{TMA} + 2 \cdot Ir)(W_{TMA} + 2 \cdot Ir)(T_{TMA} + 2 \cdot Ir) - V_{TMA} = 291$ 

cu in

Weight of Ice on Each TMA =

 $W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 9$ 

 $Wt_{ice.TMA1} := W_{ICETMA} \cdot N_{TMA} = 170$ 

BLC 3

Weight of Ice on All TMA's =

Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure Applied to all TMA's Simultaneously

Surface Area for One TMA w/ Ice =

 $SA_{ICETMA} := \frac{\left(L_{TMA} + 2 \cdot Ir\right) \cdot \left(W_{TMA} + 2 \cdot Ir\right)}{144} = 1.3$ 

TMA Projected Surface Area w/ Ice =

A<sub>ICETMA</sub> := SA<sub>ICETMA</sub>·N<sub>TMA</sub> = 22.9

Total TMA Wind Force w/ Ice =

 $Fi_{TMA1} := p \cdot Cd_F \cdot A_{ICETMA} = 147$ 

BLC 4

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure Applied to all TMA's Simultaneously

Surface Area for One TMA =

 $SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 1.1$ 

sf

sf

TMA Projected Surface Area =

 $A_{TMA} := SA_{TMA} \cdot N_{TMA} = 19.6$ 

Total TMA Wind Force =

 $F_{TMA1} := qz \cdot Cd_F \cdot A_{TMA} \cdot m = 1325$ 

BLC 5

VT=K engineering

Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 3: 8/26/14

Load Analysis of Powermount on CL&P

Structure #783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 13305.000

#### Development of Wind & Ice Load on Antenna Mounts

Mount Data:

Mount Type: Site Pro Ultra Low Profile Monopole Mount ULP12

Mount Shape = Flat

Mount Projected Surface Area = CdAa := 27 (User Input)

Mount Projected Surface Area w/ Ice =  $CdAa_{ice} := 33.8$ (User Input)

> Mount Weight =  $WT_{mnt} := 1405$ (User Input)

Mount Weight w/ Ice = Ibs (User Input)  $WT_{mnt.ice} = 1760$ 

(AT&T)

Gravity Loads (without ice)

Weight of All Mounts =  $Wt_{mnt1} := WT_{mnt} = 1405$ 

BLC 2

Gravity Load (ice only)

Weight of Ice on All Mounts =  $Wt_{ice.mnt1} := (WT_{mnt.ice} - WT_{mnt}) = 355$ BLC 3

Wind Load (NESC Heavy)

Fi<sub>mnt1</sub> := p·CdAa<sub>ice</sub> = 135 Total Mount Wind Force w/ Ice = BLC 4

Wind Load (NESC Extreme)

 $F_{mnt1} := qz \cdot CdAa \cdot m = 1138$ Total Mount Wind Force = BLC 5



Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Load Analysis of Powermount on CL&P

Structure #783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C. Job No. 13305.000

Rev. 3: 8/26/14

#### Development of Wind & Ice Load on Coax Cables

#### Coax Cable Data:

Coax Type = HELIAX 1-5/8"

> Shape = Round (User Input)

Coax Outside Diameter = (User Input)  $D_{coax} := 1.98$ 

Coax Cable Length =  $L_{coax} := 10$ ft (User Input)

Weight of Coax per foot =  $Wt_{coax} := 1.04$ plf (User Input)

Total Number of Coax = (User Input)  $N_{coax} := 36$ 

No. of Coax Projecting Outside Face of PCS Mast =  $NP_{COax} := 8$ (User Input)

#### Gravity Loads (without ice)

Weight of all cables w/o ice =

 $WT_{coax} := Wt_{coax} \cdot N_{coax} = 37$ 

plf BLC 2

#### Gravity Load (ice only)

Ice Area per Linear Foot =

 $Ai_{coax} := \frac{\pi}{4} \left[ \left( D_{coax} + 2 \cdot Ir \right)^2 - D_{coax}^2 \right] = 3.9$ 

$$WTi_{coax} := N_{coax} \cdot Id \cdot \frac{Ai_{coax}}{144} = 55$$

plf BLC 3

#### Wind Load (NESC Heavy)

Coax projected surface area w/ Ice =

 $AICE_{coax} := \frac{NP_{coax} \cdot \left(D_{coax} + 2 \cdot Ir\right)}{12} = 2$ 

sf/ft

sq in

Total Coax Wind Force w/ Ice =

 $Fi_{coax} := p \cdot Cd_{coax} \cdot AICE_{coax} = 12$ 

BLC 4 plf

#### Wind Load (NESC Extreme)

Coax projected surface area =

 $A_{coax} := \frac{\left(NP_{coax}D_{coax}\right)}{12} = 1.3$ 

sf/ft

Total Coax Wind Force (Above NU Structure) =

 $F_{coax} := qz \cdot Cd_{coax} \cdot A_{coax} \cdot m = 81$ 

BLC 5



Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 3: 8/26/14

Load Analysis of Powermount on CL&P

Structure #783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 13305.000

#### Development of Wind & Ice Load on Brace Member

HSS6x6x3/8 Member Data:

> Shape = Flat (User Input)

> (User Input) Width =  $W_{mem} := 6$

Length = (User Input)  $L_{mem} = 5.5$ 

Height =  $H_{mem} := 6$ in (User Input)

#### Wind Load (NESC Extreme)

Member Projected Surface Area =

$$A_{mem} := \frac{W_{mem}}{12} = 0.5$$

sf/f

sf/f

Total Member Wind Force =

$$qz \cdot Cd_F \cdot A_{mem} = 27$$

plf BLC 5

#### Wind Load (NESE Heavy)

Member Projected Surface Area w/ I ce =

$$AICE_{mem} := \frac{\left(W_{mem} + 2 \cdot Ir\right)}{12} = 0.583$$

Total Member Wind Force w/ Ice =

$$p \cdot Cd_F \cdot AICE_{mem} = 4$$

plf BLC 4

#### Gravity Loads (without ice)

Weight of the Member =

Self Weight

(Computed internally by Risa-3D)

plf BLC 1

#### Gravity Loads (ice only)

Ice Area per Linear Foot =

$$Ai_{mem} := (W_{mem} + 2 \cdot Ir) \cdot (H_{mem} + 2 \cdot Ir) - W_{mem} \cdot H_{mem} = 13$$

sq in

$$W_{ICEmem} := Id \cdot \frac{Ai_{mem}}{144} = 5$$

BLC 3

| CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 | Subject: Location:                             | Analysis of NESC Heavy Wind and NESC Extreme Wind for Obtaining Antenna Frame Reactions Applied to CL&P Structure Tabulated Load Cases  Meriden, CT |                    |                 |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|--|--|
| Ph. 203-488-0580 / Fax. 203-488-8587                                                      | Date:1/2/14                                    | Prepared by: T.J.L.                                                                                                                                 | Checked by: C.F.C. | Job No. 13305.0 |  |  |
| Load Case                                                                                 |                                                | Description                                                                                                                                         |                    |                 |  |  |
| 1                                                                                         | Self Weight (Antenna Frame)                    |                                                                                                                                                     |                    |                 |  |  |
| 2                                                                                         |                                                | Weight of Appurtenance                                                                                                                              | es                 |                 |  |  |
| 3                                                                                         |                                                | Weight of Ice Only on Antenna                                                                                                                       | a Frame            |                 |  |  |
| 4 x-direction NESC Heavy Wind on Antenna Frame                                            |                                                |                                                                                                                                                     |                    |                 |  |  |
| 5                                                                                         | x-direction NESC Extreme Wind on Antenna Frame |                                                                                                                                                     |                    |                 |  |  |
|                                                                                           |                                                |                                                                                                                                                     |                    |                 |  |  |
|                                                                                           |                                                |                                                                                                                                                     |                    |                 |  |  |

| CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 |                                                | Subject: Analysis of NESC Heavy Wind and NESC Extreme Wind for Obtaining Antenna Frame Reactions Applied to CL&P Load Combinations Table Location: Meriden, CT |   |            |          |        |       |            | structur | е      |     |        |         |           |
|-------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|----------|--------|-------|------------|----------|--------|-----|--------|---------|-----------|
|                                                                                           | Ph. 203-488-0580 / Fax. 203-488-8587           | Date: 1/2/14                                                                                                                                                   |   | Prepared b | oy: T.J. | L.     | Check | ed by: C.F | C.       |        |     | Jo     | b No. ´ | 13305.000 |
| Load Combination                                                                          | Description                                    | Envelope<br>Soultion                                                                                                                                           |   | P-Delta    | BLC      | Factor | BLC   | Factor     | BLC      | Factor | BLC | Factor | BLC     | Factor    |
| 1                                                                                         | x-direction NESC Heavy Wind on Antenna Frame   |                                                                                                                                                                | 1 |            | 1        | 1.5    | 2     | 1.5        | 3        | 1.5    | 4   | 2.5    |         |           |
| 2                                                                                         | x-direction NESC Extreme Wind on Antenna Frame |                                                                                                                                                                | 1 |            | 1        | 1      | 2     | 1          | 5        | 1      |     |        |         |           |
|                                                                                           | Footnotes: 1) BLC = Basic Load Case            |                                                                                                                                                                |   |            |          |        |       |            |          |        |     |        |         |           |



Company :
Designer :
Job Number :
Model Name :

: CENTEK Engineering, Inc. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_\_

### Global

| Display Sections for Member Calcs         | 5                  |
|-------------------------------------------|--------------------|
| Max Internal Sections for Member Calcs    | 97                 |
| Include Shear Deformation?                | Yes                |
| Include Warping?                          | Yes                |
| Trans Load Btwn Intersecting Wood Wall?   | Yes                |
| Increase Nailing Capacity for Wind?       | Yes                |
| Area Load Mesh (in^2)                     | 144                |
| Merge Tolerance (in)                      | .12                |
| P-Delta Analysis Tolerance                | 0.50%              |
| Include P-Delta for Walls?                | Yes                |
| Automaticly Iterate Stiffness for Walls?  | No                 |
| Maximum Iteration Number for Wall Stiffne | sŝ                 |
| Gravity Acceleration (ft/sec^2)           | 32.2               |
| Wall Mesh Size (in)                       | 12                 |
| Eigensolution Convergence Tol. (1.E-)     | 4                  |
| Vertical Axis                             | Υ                  |
| Global Member Orientation Plane           | XZ                 |
| Static Solver                             | Sparse Accelerated |
| Dynamic Solver                            | Accelerated Solver |

| Hot Rolled Steel Code  | AISC 9th: ASD              |  |  |  |
|------------------------|----------------------------|--|--|--|
| RISAConnection Code    | AISC 14th(360-10): ASD     |  |  |  |
| Cold Formed Steel Code | AISI 1999: ASD             |  |  |  |
| Wood Code              | AF&PA NDS-97: ASD          |  |  |  |
| Wood Temperature       | < 100F                     |  |  |  |
| Concrete Code          | ACI 318-02                 |  |  |  |
| Masonry Code           | ACI 530-05: ASD            |  |  |  |
| Aluminum Code          | AA ADM1-05: ASD - Building |  |  |  |

| Number of Shear Regions       | 4                  |  |  |  |
|-------------------------------|--------------------|--|--|--|
| Region Spacing Increment (in) | 4                  |  |  |  |
| Biaxial Column Method         | PCA Load Contour   |  |  |  |
| Parme Beta Factor (PCA)       | .65                |  |  |  |
| Concrete Stress Block         | Rectangular        |  |  |  |
| Use Cracked Sections?         | Yes                |  |  |  |
| Use Cracked Sections Slab?    | Yes                |  |  |  |
| Bad Framing Warnings?         | No                 |  |  |  |
| Unused Force Warnings?        | Yes                |  |  |  |
| Min 1 Bar Diam. Spacing?      | No                 |  |  |  |
| Concrete Rebar Set            | REBAR_SET_ASTMA615 |  |  |  |
| Min % Steel for Column        | 1                  |  |  |  |
| Max % Steel for Column        | 8                  |  |  |  |



: CENTEK Engineering, Inc. : tjl, cfc : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_\_

## Global, Continued

| Seismic Code                | UBC 1997    |
|-----------------------------|-------------|
| Seismic Base Elevation (ft) | Not Entered |
| Add Base Weight?            | No          |
| Ct Z                        | .035        |
| Ct X                        | .035        |
| T Z (sec)                   | Not Entered |
| T X (sec)                   | Not Entered |
| RZ                          | 8.5         |
| RX                          | 8.5         |
| Ca                          | .36         |
| Cv                          | .54         |
| Nv                          | 1           |
| Occupancy Category          | 4           |
| Seismic Zone                | 3           |
| Seismic Detailing Code      | ASCE 7-05   |
| Om Z                        | 1           |
| Om X                        | 1           |
| Rho Z                       | 1           |
| Rho X                       | 1           |

| Footing Overturning Safety Factor | 1.5    |
|-----------------------------------|--------|
| Check Concrete Bearing            | No     |
| Footing Concrete Weight (k/ft^3)  | 0      |
| Footing Concrete f'c (ksi)        | 3      |
| Footing Concrete Ec (ksi)         | 4000   |
| Lamda                             | 1      |
| Footing Steel fy (ksi)            | 60     |
| Minimum Steel                     | 0.0018 |
| Maximum Steel                     | 0.0075 |
| Footing Top Bar                   | #3     |
| Footing Top Bar Cover (in)        | 3.5    |
| Footing Bottom Bar                | #3     |
| Footing Bottom Bar Cover (in)     | 3.5    |
| Pedestal Bar                      | #3     |
| Pedestal Bar Cover (in)           | 1.5    |
| Pedestal Ties                     | #3     |

## **Hot Rolled Steel Properties**

|   | Label      | E [ksi] | G [ksi] | Nu | Therm (\1 | Density[k/ft^3] | Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|---|------------|---------|---------|----|-----------|-----------------|------------|-----|---------|-----|
| 1 | A36 Gr.36  | 29000   | 11154   | .3 | .65       | .49             | 36         | 1.5 | 58      | 1.2 |
| 2 | A572 Gr.50 | 29000   | 11154   | .3 | .65       | .49             | 50         | 1.1 | 58      | 1.2 |
| 3 | A992       | 29000   | 11154   | .3 | .65       | .49             | 50         | 1.1 | 58      | 1.2 |
| 4 | A500 Gr.42 | 29000   | 11154   | .3 | .65       | .49             | 42         | 1.3 | 58      | 1.1 |
| 5 | A500 Gr.46 | 29000   | 11154   | .3 | .65       | .49             | 46         | 1.2 | 58      | 1.1 |
| 6 | A53 Gr. B  | 29000   | 11154   | .3 | .65       | .49             | 35         | 1.5 | 58      | 1.2 |



: CENTEK Engineering, Inc.: tjl, cfc: 13305 / AT&T CT2117: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_\_

### Hot Rolled Steel Design Parameters

|    | Label | Shape |       | Lbyy[ft] | Lbzz[ft] | Lcomp . | Lcomp | . Куу | Kzz | Cm | Cm | Cb | y s | z s | Functi  |
|----|-------|-------|-------|----------|----------|---------|-------|-------|-----|----|----|----|-----|-----|---------|
| 1  | M1    | Mast  | 13.25 |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 2  | M2    | Brace | 18.5  |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 3  | M3    | Brace | 18.5  |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 4  | M4    | Brace | 18.5  |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 5  | M5    | Brace | 18.5  |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 6  | M6    | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 7  | M7    | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 8  | M8    | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 9  | M9    | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 10 | M10   | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 11 | M11   | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 12 | M12   | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 13 | M13   | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 14 | M14   | Brace | 5.5   | Segment  | Segment  |         |       |       |     |    |    |    |     |     | Lateral |
| 15 | M15   | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 16 | M16   | Brace | 5.5   | Segment  | Segment  |         |       |       |     |    |    |    |     |     | Lateral |
| 17 | M17   | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 18 | M18   | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 19 | M19   | Brace | 5.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 20 | M20   | Brace | 1.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 21 | M21   | Brace | 1.5   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 22 | M24   | Brace | .75   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 23 | M25   | Brace | .75   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 24 | M26   | Brace | .75   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 25 | M27   | Brace | .75   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 26 | M28   | Brace | .75   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 27 | M29   | Brace | .75   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 28 | M30   | Brace | .75   |          |          |         |       |       |     |    |    |    |     |     | Lateral |
| 29 | M31   | Brace | .75   |          |          |         |       |       |     |    |    |    |     |     | Lateral |

### **Hot Rolled Steel Section Sets**

|   | Label | Shape         | Type | Design List | Material   | Design Ru | . A [in2] | lyy [in4] | Izz [in4] | J [in4] |
|---|-------|---------------|------|-------------|------------|-----------|-----------|-----------|-----------|---------|
| 1 | Mast  | HSS12.5X0.625 | Beam | Pipe        | A53 Gr. B  | Typical   | 21.8      | 387       | 387       | 774     |
| 2 | Brace | HSS6x6x6      | Beam | Tube        | A500 Gr.46 | Typical   | 7.58      | 39.5      | 39.5      | 64.6    |

### **Member Primary Data**

|    | Label | I Joint | J Joint | K Joint | Rotate(d | Section/Shape | Type | Design List | Material   | Design R |
|----|-------|---------|---------|---------|----------|---------------|------|-------------|------------|----------|
| 1  | M1    | N1      | N2      |         |          | Mast          | Beam | Pipe        | A53 Gr. B  | Typical  |
| 2  | M2    | N3      | N11     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 3  | М3    | N4      | N12     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 4  | M4    | N5      | N13     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 5  | M5    | N6      | N14     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 6  | M6    | N3      | N4      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 7  | M7    | N4      | N6      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 8  | M8    | N6      | N5      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 9  | M9    | N5      | N3      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 10 | M10   | N7      | N8      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 11 | M11   | N8      | N10     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 12 | M12   | N10     | N9      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |



Company :
Designer :
Job Number :
Model Name :

: CENTEK Engineering, Inc. : tjl, cfc er : 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_\_

### **Member Primary Data (Continued)**

|    | Label | I Joint | J Joint | K Joint | Rotate(d | Section/Shape | Type | Design List | Material   | Design R |
|----|-------|---------|---------|---------|----------|---------------|------|-------------|------------|----------|
| 13 | M13   | N9      | N7      |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 14 | M14   | N11     | N12     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 15 | M15   | N12     | N14     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 16 | M16   | N14     | N13     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 17 | M17   | N13     | N11     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 18 | M18   | N18     | N16     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 19 | M19   | N15     | N17     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 20 | M20   | N20     | N22     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 21 | M21   | N19     | N21     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 22 | M22   | N20     | N21     |         |          | RIGID         | None | None        | RIGID      | Typical  |
| 23 | M23   | N19     | N22     |         |          | RIGID         | None | None        | RIGID      | Typical  |
| 24 | M24   | N23     | N27     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 25 | M25   | N24     | N28     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 26 | M26   | N25     | N29     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 27 | M27   | N26     | N30     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 28 | M28   | N31     | N35     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 29 | M29   | N32     | N36     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 30 | M30   | N33     | N37     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |
| 31 | M31   | N34     | N38     |         |          | Brace         | Beam | Tube        | A500 Gr.46 | Typical  |

### **Joint Coordinates and Temperatures**

|    | Label | X [ft] | Y [ft] | Z [ft] | Temp [F] | Detach From Dia |
|----|-------|--------|--------|--------|----------|-----------------|
| 1  | N1    | 0      | 18.5   | 0      | 0        |                 |
| 2  | N2    | 0      | 31.75  | 0      | 0        |                 |
| 3  | N3    | 2.75   | 0      | 2.75   | 0        |                 |
| 4  | N4    | 2.75   | 0      | -2.75  | 0        |                 |
| 5  | N5    | -2.75  | 0      | 2.75   | 0        |                 |
| 6  | N6    | -2.75  | 0      | -2.75  | 0        |                 |
| 7  | N7    | 2.75   | 11     | 2.75   | 0        |                 |
| 8  | N8    | 2.75   | 11     | -2.75  | 0        |                 |
| 9  | N9    | -2.75  | 11     | 2.75   | 0        |                 |
| 10 | N10   | -2.75  | 11     | -2.75  | 0        |                 |
| 11 | N11   | 2.75   | 18.5   | 2.75   | 0        |                 |
| 12 | N12   | 2.75   | 18.5   | -2.75  | 0        |                 |
| 13 | N13   | -2.75  | 18.5   | 2.75   | 0        |                 |
| 14 | N14   | -2.75  | 18.5   | -2.75  | 0        |                 |
| 15 | N15   | 2.75   | 18.5   | .75    | 0        |                 |
| 16 | N16   | 2.75   | 18.5   | 75     | 0        |                 |
| 17 | N17   | -2.75  | 18.5   | .75    | 0        |                 |
| 18 | N18   | -2.75  | 18.5   | 75     | 0        |                 |
| 19 | N19   | .75    | 18.5   | .75    | 0        |                 |
| 20 | N20   | 75     | 18.5   | .75    | 0        |                 |
| 21 | N21   | .75    | 18.5   | 75     | 0        |                 |
| 22 | N22   | 75     | 18.5   | 75     | 0        |                 |
| 23 | N23   | 2.75   | 0      | 1.833  | 0        |                 |
| 24 | N24   | 2.75   | 0      | -1.833 | 0        |                 |
| 25 | N25   | -2.75  | 0      | 1.833  | 0        |                 |
| 26 | N26   | -2.75  | 0      | -1.833 | 0        |                 |
| 27 | N27   | 2      | 0      | 1.833  | 0        |                 |
| 28 | N28   | 2      | 0      | -1.833 | 0        |                 |



Company Designer Job Number : CENTEK Engineering, Inc.: tjl, cfc: 13305 / AT&T CT2117

: CL&P # 783 - Mast

Oct 6, 2014

Checked By:\_\_\_

Joint Coordinates and Temperatures (Continued)

|    | Label | X [ft] | Y [ft] | Z [ft] | Temp [F] | Detach From Dia |
|----|-------|--------|--------|--------|----------|-----------------|
| 29 | N29   | -2     | 0      | 1.833  | 0        |                 |
| 30 | N30   | -2     | 0      | -1.833 | 0        |                 |
| 31 | N31   | 2.75   | 11     | 1.833  | 0        |                 |
| 32 | N32   | 2.75   | 11     | -1.833 | 0        |                 |
| 33 | N33   | -2.75  | 11     | 1.833  | 0        |                 |
| 34 | N34   | -2.75  | 11     | -1.833 | 0        |                 |
| 35 | N35   | 2      | 11     | 1.833  | 0        |                 |
| 36 | N36   | 2      | 11     | -1.833 | 0        |                 |
| 37 | N37   | -2     | 11     | 1.833  | 0        |                 |
| 38 | N38   | -2     | 11     | -1.833 | 0        |                 |

### **Joint Boundary Conditions**

|    | Joint Label | X [k/in] | Y [k/in] | Z [k/in] | X Rot.[k-ft/rad] | Y Rot.[k-ft/rad] | Z Rot.[k-ft/rad] | Footing |
|----|-------------|----------|----------|----------|------------------|------------------|------------------|---------|
| 1  | N1          |          |          |          |                  |                  |                  |         |
| 2  | N7          |          |          |          |                  |                  |                  |         |
| 3  | N9          |          |          |          |                  |                  |                  |         |
| 4  | N8          |          |          |          |                  |                  |                  |         |
| 5  | N10         |          |          |          |                  |                  |                  |         |
| 6  | N3          |          |          |          |                  |                  |                  |         |
| 7  | N4          |          |          |          |                  |                  |                  |         |
| 8  | N5          |          |          |          |                  |                  |                  |         |
| 9  | N6          |          |          |          |                  |                  |                  |         |
| 10 | N31         |          |          |          |                  |                  |                  |         |
| 11 | N32         |          |          |          |                  |                  |                  |         |
| 12 | N33         |          |          |          |                  |                  |                  |         |
| 13 | N34         |          |          |          |                  |                  |                  |         |
| 14 | N35         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 15 | N36         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 16 | N37         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 17 | N38         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 18 | N23         |          |          |          |                  |                  |                  |         |
| 19 | N24         |          |          |          |                  |                  |                  |         |
| 20 | N25         |          |          |          |                  |                  |                  |         |
| 21 | N26         |          |          |          |                  |                  |                  |         |
| 22 | N27         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 23 | N28         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 24 | N29         | Reaction | Reaction | Reaction |                  |                  |                  |         |
| 25 | N30         | Reaction | Reaction | Reaction |                  |                  |                  |         |

### Member Point Loads (BLC 2 : Weight of Appurtenances)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | Υ         | 468               | 9.25           |
| 2 | M1           | Υ         | 3                 | 9.25           |
| 3 | M1           | Υ         | 54                | 9.25           |
| 4 | M1           | Υ         | -1.405            | 9.25           |

### Member Point Loads (BLC 3: Weight of Ice Only on Antenna Fr)

| Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|--------------|-----------|-------------------|----------------|
|              |           |                   |                |



Company Designer Job Number : CENTEK Engineering, Inc. : tjl, cfc

: 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_

### Member Point Loads (BLC 3: Weight of Ice Only on Antenna Fr) (Continued)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | Υ         | 443               | 9.25           |
| 2 | M1           | Υ         | 214               | 9.25           |
| 3 | M1           | Υ         | 17                | 9.25           |
| 4 | M1           | Υ         | 355               | 9.25           |

### Member Point Loads (BLC 4: x-dir NESC Heavy Wind on Antenna)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | X         | .394              | 9.25           |
| 2 | M1           | X         | .192              | 9.25           |
| 3 | M1           | X         | .147              | 9.25           |
| 4 | M1           | X         | .135              | 9.25           |

### Member Point Loads (BLC 5 : x-dir NESC Extreme Wind on Anten)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M1           | X         | 3.842             | 9.25           |
| 2 | M1           | X         | 1.875             | 9.25           |
| 3 | M1           | X         | 1.325             | 9.25           |
| 4 | M1           | X         | 1.138             | 9.25           |

### Joint Loads and Enforced Displacements

| _ | Joint Label | L,D,M            | Direction | Magnitude[(k,k-ft), (in,rad), (k*s^2/f |
|---|-------------|------------------|-----------|----------------------------------------|
|   |             | No Data to Print |           |                                        |

### Member Distributed Loads (BLC 2 : Weight of Appurtenances)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1 | M1           | Υ         | 037                     | 037                   | 0                    | 0                  |
| 2 | M4           | Υ         | 019                     | 019                   | 11                   | 18                 |
| 3 | M2           | Y         | 019                     | 019                   | 11                   | 18                 |

#### Member Distributed Loads (BLC 3: Weight of Ice Only on Antenna Fr)

|    | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1  | M1           | Υ         | 008                     | 008                   | 0                    | 0                  |
| 2  | M1           | Υ         | 055                     | 055                   | 0                    | 0                  |
| 3  | M4           | Υ         | 028                     | 028                   | 11                   | 18                 |
| 4  | M2           | Υ         | 028                     | 028                   | 11                   | 18                 |
| 5  | M9           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 6  | M8           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 7  | M7           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 8  | M6           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 9  | M2           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 10 | M3           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 11 | M4           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 12 | M5           | Υ         | 005                     | 005                   | 0                    | 0                  |
| 13 | M13          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 14 | M12          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 15 | M11          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 16 | M10          | Υ         | 005                     | 005                   | 0                    | 0                  |



Company Designer Job Number

: CENTEK Engineering, Inc.: tjl, cfc

: 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_\_

### Member Distributed Loads (BLC 3: Weight of Ice Only on Antenna Fr) (Continued)

|    | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 17 | M15          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 18 | M16          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 19 | M17          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 20 | M14          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 21 | M18          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 22 | M19          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 23 | M21          | Υ         | 005                     | 005                   | 0                    | 0                  |
| 24 | M20          | Υ         | 005                     | 005                   | 0                    | 0                  |

### Member Distributed Loads (BLC 4 : x-dir NESC Heavy Wind on Antenna)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1 | M1           | X         | .006                    | .006                  | 0                    | 0                  |
| 2 | M1           | Χ         | .012                    | .012                  | 0                    | 0                  |
| 3 | M4           | Χ         | .006                    | .006                  | 11                   | 18                 |
| 4 | M2           | Χ         | .006                    | .006                  | 11                   | 18                 |
| 5 | M4           | X         | .004                    | .004                  | 0                    | 0                  |
| 6 | M5           | Χ         | .004                    | .004                  | 0                    | 0                  |
| 7 | M12          | Χ         | .004                    | .004                  | 0                    | 0                  |
| 8 | M16          | X         | .004                    | .004                  | 0                    | 0                  |
| 9 | M8           | X         | .004                    | .004                  | 0                    | 0                  |

### Member Distributed Loads (BLC 5 : x-dir NESC Extreme Wind on Anten)

|   | Member Label | Direction | Start Magnitude[k/ft,F] | End Magnitude[k/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1 | M1           | X         | .046                    | .046                  | 0                    | 0                  |
| 2 | M1           | X         | .081                    | .081                  | 0                    | 0                  |
| 3 | M4           | X         | .04                     | .04                   | 11                   | 18                 |
| 4 | M2           | Χ         | .04                     | .04                   | 11                   | 18                 |
| 5 | M4           | X         | .027                    | .027                  | 0                    | 0                  |
| 6 | M5           | X         | .027                    | .027                  | 0                    | 0                  |
| 7 | M16          | X         | .027                    | .027                  | 0                    | 0                  |
| 8 | M12          | X         | .027                    | .027                  | 0                    | 0                  |
| 9 | M8           | X         | .027                    | .027                  | 0                    | 0                  |

### **Basic Load Cases**

|   | BLC Description                  | Category | X Gra | Y Gra | Z Grav | . Joint | Point | Distrib | Area( | Surfac |
|---|----------------------------------|----------|-------|-------|--------|---------|-------|---------|-------|--------|
| 1 | Self Weight (Antenna Frame)      | None     |       | -1    |        |         |       |         |       |        |
| 2 | Weight of Appurtenances          | None     |       |       |        |         | 4     | 3       |       |        |
| 3 | Weight of Ice Only on Antenna Fr | None     |       |       |        |         | 4     | 24      |       |        |
| 4 | x-dir NESC Heavy Wind on Ante    | None     |       |       |        |         | 4     | 9       |       |        |
| 5 | x-dir NESC Extreme Wind on An    | None     |       |       |        |         | 4     | 9       |       |        |

### **Load Combinations**

|   | Description                 | Solve | PDelta | SRSS | В | Fa  | BLC | Fa  | BLC | Fa  | В | Fa  | В | Fa | В | Fa | В | Fa | В | Fa |
|---|-----------------------------|-------|--------|------|---|-----|-----|-----|-----|-----|---|-----|---|----|---|----|---|----|---|----|
| 1 | x-dir NESC Heavy Wind on An | Yes   |        |      | 1 | 1.5 | 2   | 1.5 | 3   | 1.5 | 4 | 2.5 |   |    |   |    |   |    |   |    |
| 2 | x-dir NESC Extreme Wind on  | Yes   |        |      | 1 | 1   | 2   | 1   | 5   | 1   |   |     |   |    |   |    |   |    |   |    |
| 3 | Self Weight                 |       |        |      | 1 | 1   |     |     |     |     |   |     |   |    |   |    |   |    |   |    |



: CENTEK Engineering, Inc.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_\_

### **Envelope Joint Reactions**

|    | Joint   |     | X [k]   | LC | Y [k]  | LC | Z [k]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|---------|----|--------|----|--------|----|-----------|----|-----------|----|-----------|----|
| 1  | N35     | max | -1.279  | 1  | 7.256  | 2  | -1.085 | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 2  |         | min | -4.333  | 2  | 4.236  | 1  | -3.732 | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 3  | N36     | max | -1.139  | 1  | 7.136  | 2  | 3.805  | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 4  |         | min | -3.961  | 2  | 3.831  | 1  | 1.112  | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 5  | N37     | max | -1.288  | 1  | .825   | 1  | 3.729  | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 6  |         | min | -4.425  | 2  | -4.929 | 2  | 1.062  | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 7  | N38     | max | -1.15   | 1  | .429   | 1  | -1.089 | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 8  |         | min | -4.053  | 2  | -5.025 | 2  | -3.802 | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 9  | N27     | max | 1.292   | 2  | 8.359  | 2  | 1.159  | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 10 |         | min | .374    | 1  | 4.298  | 1  | .333   | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 11 | N28     | max | 1.266   | 2  | 8.17   | 2  | 335    | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 12 |         | min | .362    | 1  | 3.921  | 1  | -1.165 | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 13 | N29     | max | 1.186   | 2  | .2     | 1  | 308    | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 14 |         | min | .308    | 1  | -6.196 | 2  | -1.15  | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 15 | N30     | max | 1.161   | 2  | 104    | 1  | 1.155  | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 16 |         | min | .301    | 1  | -6.191 | 2  | .31    | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 17 | Totals: | max | -3.511  | 1  | 17.637 | 1  | 0      | 2  |           |    |           |    |           |    |
| 18 |         | min | -11.867 | 2  | 8.579  | 2  | 0      | 1  |           |    |           |    |           |    |



: CENTEK Engineering, Inc. : til. cfc

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_\_

### **Joint Reactions**

|    | LC | Joint Label | X [k]  | Y [k]     | Z [k]   | MX [k-ft] | MY [k-ft] | MZ [k-ft] |
|----|----|-------------|--------|-----------|---------|-----------|-----------|-----------|
| 1  | 1  | N35         | -1.279 | 4.236     | -1.085  | 0         | 0         | 0         |
| 2  | 1  | N36         | -1.139 | 3.831     | 1.112   | 0         | 0         | 0         |
| 3  | 1  | N37         | -1.288 | .825      | 1.062   | 0         | 0         | 0         |
| 4  | 1  | N38         | -1.15  | .429      | -1.089  | 0         | 0         | 0         |
| 5  | 1  | N27         | .374   | 4.298     | .333    | 0         | 0         | 0         |
| 6  | 1  | N28         | .362   | 3.921     | 335     | 0         | 0         | 0         |
| 7  | 1  | N29         | .308   | .2        | 308     | 0         | 0         | 0         |
| 8  | 1  | N30         | .301   | 104       | .31     | 0         | 0         | 0         |
| 9  | 1  | Totals:     | -3.511 | 17.637    | 0       |           |           |           |
| 10 | 1  | COG (ft):   | X: 0   | Y: 19.179 | Z: .154 |           |           |           |



: CENTEK Engineering, Inc.

: tjl, cfc : 13305 / AT&T CT2117 : CL&P # 783 - Mast Oct 6, 2014

Checked By:\_\_\_

### Joint Reactions

|    | LC | Joint Label | X [k]   | Y [k]     | Z [k]   | MX [k-ft] | MY [k-ft] | MZ [k-ft] |
|----|----|-------------|---------|-----------|---------|-----------|-----------|-----------|
| 1  | 2  | N35         | -4.333  | 7.256     | -3.732  | 0         | 0         | 0         |
| 2  | 2  | N36         | -3.961  | 7.136     | 3.805   | 0         | 0         | 0         |
| 3  | 2  | N37         | -4.425  | -4.929    | 3.729   | 0         | 0         | 0         |
| 4  | 2  | N38         | -4.053  | -5.025    | -3.802  | 0         | 0         | 0         |
| 5  | 2  | N27         | 1.292   | 8.359     | 1.159   | 0         | 0         | 0         |
| 6  | 2  | N28         | 1.266   | 8.17      | -1.165  | 0         | 0         | 0         |
| 7  | 2  | N29         | 1.186   | -6.196    | -1.15   | 0         | 0         | 0         |
| 8  | 2  | N30         | 1.161   | -6.191    | 1.155   | 0         | 0         | 0         |
| 9  | 2  | Totals:     | -11.867 | 8.579     | 0       |           |           |           |
| 10 | 2  | COG (ft):   | X: 0    | Y: 18.427 | Z: .085 |           |           |           |





Loads: LC 1, x-dir NESC Heavy Wind on Antenna Frame

| CENTEK Engineering, Inc. |                   |                         |
|--------------------------|-------------------|-------------------------|
| tjl, cfc                 | CL&P # 783 - Mast | Oct 6, 2014 at 10:14 AM |
| 13305 / AT&T CT2117      | LC #1 Loads       | NESC.r3d                |





| CENTEK Engineering, Inc. |
|--------------------------|
| tjl, cfc                 |
| 13305 / AT&T CT2117      |

CL&P # 783 - Mast LC #1 Reactions Oct 6, 2014 at 10:15 AM NESC.r3d





Loads: LC 2, x-dir NESC Extreme Wind on Antenna Frame

| CENTEK Engineering, Inc. |                   |                         |
|--------------------------|-------------------|-------------------------|
| tjl, cfc                 | CL&P # 783 - Mast | Oct 6, 2014 at 10:14 AM |
| 13305 / AT&T CT2117      | LC #2 Loads       | NESC.r3d                |





| CENTEK Engineering, Inc. |                   |                         |
|--------------------------|-------------------|-------------------------|
| tjl, cfc                 | CL&P # 783 - Mast | Oct 6, 2014 at 10:16 AM |
| 13305 / AT&T CT2117      | LC #2 Reactions   | NESC.r3d                |



Subject:

Location:

Sprint Coax Cable on CL&P Tower # 783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 13305.000

(User Input)

Rev. 1: 5/20/14

# Coax Cable on CL&P Tower

Distance Between Coax Cable Attach Points =

Diameter of Coax Cable =  $D_{coax} := 1.98 \cdot in$ (User Input)

Weight of Coax Cable =  $W_{coax} = 1.04 \cdot plf$ (User Input)

Number of Coax Cables =  $N_{coax} := 18$ (User Input) (Typ. of Two Legs)

Number of Projected Coax Cables Transverse =  $NP_{Tcoax} := 9$ (User Input)

> Extreme Wind Pressure =  $qz := 33.8 \cdot psf$ (User Input)

Heavy Wind Pressure = (User Input)  $p := 4 \cdot psf$ 

Radial Ice Thickness =  $Ir := 0.5 \cdot in$ (User Input)

 $Id := 56 \cdot pcf$ 

Shape Factor =  $Cd_{coax} := 1.6$ (User Input)

Overload Factor for NESC Heavy Wind Load =  $OF_{HW} := 2.5$ (User Input)

Radial Ice Density =

Overload Factor for NESC Extreme Wind Load =  $OF_{EW} := 1.0$ (User Input)

Overload Factor for NESC Heavy Vertical Load = OF<sub>HV</sub> := 1.5 (User Input)

Overload Factor for NESC Extreme Vertical Load =  $OF_{FV} = 1.0$ (User Input)

> Wind Area with Ice Transverse =  $A_{Tice} := (NP_{Tcoax} \cdot D_{coax} + 2 \cdot Ir) = 18.82 \cdot in$

Wind Area without I ce Transverse =  $A_T := \left(NP_{Tcoax} \cdot D_{coax}\right) = 17.82 \cdot in$ 

> $\operatorname{Ai}_{\operatorname{coax}} \coloneqq \frac{\pi}{4} \cdot \left[ \left( \operatorname{D}_{\operatorname{coax}} + 2 \cdot \operatorname{Ir} \right)^2 - \operatorname{D}_{\operatorname{coax}}^2 \right] = 0.027 \operatorname{ft}^2$ Ice Area per Liner Ft =

Weight of Ice on All Coax Cables =  $W_{ice} := Ai_{coax} \cdot Id \cdot N_{coax} = 27.269 \cdot plf$ 



Subject:

Location:

Sprint Coax Cable on CL&P Tower # 783

Meriden, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 13305.000

Rev. 1: 5/20/14

Heavy Vertical Load =

$$\mathsf{Heavy}_{\mathsf{Vert}} \coloneqq \overline{\left[ \left( \mathsf{N}_{\mathsf{coax}} \cdot \mathsf{W}_{\mathsf{coax}} + \mathsf{W}_{\mathsf{ice}} \right) \cdot \mathsf{Coax}_{\mathsf{Span}} \cdot \mathsf{OF}_{\mathsf{HV}} \right]}$$

Heavy Transverse Load =

$$\mathsf{Heavy}_{Trans} \coloneqq \overbrace{\left( \mathsf{p} \cdot \mathsf{A}_{\mathsf{Tice}} \cdot \mathsf{Cd}_{\mathsf{coax}} \cdot \mathsf{Coax}_{\mathsf{Span}} \cdot \mathsf{OF}_{\mathsf{HW}} \right)}$$

$$\mathsf{Heavy}_{\mathsf{Vert}} = \begin{pmatrix} 569 \\ 509 \\ 560 \\ 500 \\ 655 \\ 914 \\ 1673 \end{pmatrix} \mathsf{Ib} \qquad \mathsf{Heavy}_{\mathsf{Trans}} = \begin{pmatrix} 207 \\ 185 \\ 204 \\ 182 \\ 238 \\ 332 \\ 609 \end{pmatrix} \mathsf{Ib}$$

Extreme Vertical Load =

$$Extreme_{Vert} := \overline{\left(N_{coax} \cdot W_{coax}\right) \cdot Coax_{Span} \cdot OF_{EV}}$$

Extreme Transverse Load =

$$\mathsf{Extreme}_{\mathsf{Trans}} \coloneqq \overline{\left[ \left( \mathsf{qz} \cdot \mathsf{A}_{\mathsf{T}} \cdot \mathsf{Cd}_{\mathsf{coax}} \right) \cdot \mathsf{Coax}_{\mathsf{Span}} \cdot \mathsf{OF}_{\mathsf{EW}} \right]}$$

Extreme<sub>Vert</sub> = 
$$\begin{pmatrix} 154 \\ 138 \\ 152 \\ 136 \\ 178 \\ 248 \\ 454 \end{pmatrix}$$
 | b | Extreme<sub>Trans</sub> =  $\begin{pmatrix} 663 \\ 592 \\ 653 \\ 582 \\ 763 \\ 1064 \\ 1947 \end{pmatrix}$ 





Project Name : 13305.000 - Meriden, CT

Project Notes: CL&P Structure # 783/ AT&T CT2117

Project File: J:\Jobs\1330500.WI\04 Structural\Backup Documentation\Calcs\Rev (4)\PLS Tower\pls tower - reinforced.tow

Date run : 10:20:30 AM Monday, October 06, 2014

by : Tower Version 12.50
Licensed to : Centek Engineering Inc

Successfully performed nonlinear analysis

Member "Leg6P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg6X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg6XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg6Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg11P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg11X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg11XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg11Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg13P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg13X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg13XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg13Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace8P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace8X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace8XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace8Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace9P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace9X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace9XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace9Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace10P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace10X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace10XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace10Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace11P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end.

```
edge and spacing distances will be checked. ??
Member "XBrace11X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace11XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace11Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace12P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace12X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace12XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace12Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace13P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace13X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace13XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "XBrace13Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "Arm5P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge
and spacing distances will be checked. ??
Member "Arm5X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge
and spacing distances will be checked. ??
Member "Arm5XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,
edge and spacing distances will be checked. ??
Member "Arm5Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge
and spacing distances will be checked. ??
Member "Arm6P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge
and spacing distances will be checked. ??
Member "Arm6Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge
and spacing distances will be checked. ??
Member "Diagonal 1P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however,
end, edge and spacing distances will be checked. ??
Member "Diagonal 1X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however,
end, edge and spacing distances will be checked. ??
Member "Diagonal 1XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however,
end, edge and spacing distances will be checked. ??
Member "Diagonal 1Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however,
end, edge and spacing distances will be checked. ??
The model has 46 warnings. ??
Member check option: ASCE 10
Connection rupture check: ASCE 10
Crossing diagonal check: ASCE 10 [Alternate Unsupported RLOUT = 1]
Included angle check: None
Climbing load check: None
Redundant members checked with: Actual Force
Loads from file: i:\jobs\1330500.wi\04 structural\backup documentation\calcs\rev (4)\pls tower\meriden.lca
*** Analysis Results:
Maximum element usage is 96.54% for Angle "Leg13X" in load case "NESC Extreme"
Maximum insulator usage is 19.60% for Clamp "Clamp16" in load case "NESC Extreme"
```

### Summary of Joint Support Reactions For All Load Cases:

| Load Case    | Joint<br>Label | Long.<br>Force<br>(kips) | Tran.<br>Force<br>(kips) | Vert.<br>Force<br>(kips) | Force |       | Moment | Bending<br>Moment<br>(ft-k) | Moment | Found.<br>Usage |
|--------------|----------------|--------------------------|--------------------------|--------------------------|-------|-------|--------|-----------------------------|--------|-----------------|
| NESC Heavy   | 9P             | 2.66                     | -3.11                    | 12.31                    | 4.09  | 0.21  | 0.01   | 0.21                        | 0.01   | 0.00            |
| NESC Heavy   | 9X             | -6.04                    | -6.68                    | -42.09                   | 9.01  | 0.14  | 0.30   | 0.33                        | 0.05   | 0.00            |
| NESC Heavy   | 9XY            | 6.16                     | -5.84                    | -38.72                   | 8.49  | -0.08 | 0.19   | 0.21                        | 0.04   | 0.00            |
| NESC Heavy   | 9Y             | -2.78                    | -2.44                    | 13.88                    | 3.70  | -0.05 | 0.01   | 0.05                        | 0.01   | 0.00            |
| NESC Extreme | 9P             | 11.50                    | -12.94                   | 57.37                    | 17.32 | 0.44  | -0.02  | 0.44                        | 0.02   | 0.00            |
| NESC Extreme | 9X             | -9.88                    | -11.02                   | -67.62                   | 14.80 | 0.34  | 0.47   | 0.58                        | 0.08   | 0.00            |
| NESC Extreme | 9XY            | 9.95                     | -9.34                    | -62.43                   | 13.65 | -0.07 | 0.31   | 0.32                        | 0.06   | 0.00            |
| NESC Extreme | 9Y             | -11.69                   | -9.23                    | 55.75                    | 14.89 | -0.05 | -0.01  | 0.05                        | 0.01   | 0.00            |

### Summary of Joint Support Reactions For All Load Cases in Direction of Leg:

| Load Case    | Support      | Origin | Leg     | Force In | Residual Shear | Residual Shear | Residual Shear | Residual Shear | Total  | Total  | Total  |
|--------------|--------------|--------|---------|----------|----------------|----------------|----------------|----------------|--------|--------|--------|
|              | <b>Joint</b> | Joint  | Member  | Leg Dir. | Perpendicular  | Horizontal     | Horizontal     | Horizontal     | Long.  | Tran.  | Vert.  |
|              |              |        |         |          | To Leg         | To Leg - Res.  | To Leg - Long. | To Leg - Tran. | Force  | Force  | Force  |
|              |              |        |         | (kips)   | (kips)         | (kips)         | (kips)         | (kips)         | (kips) | (kips) | (kips) |
| NESC Heavy   | 9P           | 14S    | Leg13P  | -12.903  | 1.305          | 1.336          | -0.693         | 1.142          | 2.66   | -3.11  | 12.31  |
| NESC Heavy   | 9X           | 14X    | Leg13X  | 43.033   | 0.686          | 0.696          | -0.694         | -0.052         | -6.04  | -6.68  | -42.09 |
| NESC Heavy   | 9XY          | 14XY   | Leg13XY | 39.643   | 0.348          | 0.353          | 0.037          | -0.351         | 6.16   | -5.84  | -38.72 |
| NESC Heavy   | 91           | 14Y    | Leg13Y  | -14.356  | 0.589          | 0.602          | 0.560          | 0.221          | -2.78  | -2.44  | 13.88  |
| NESC Extreme | 9P           | 14S    | Leg13P  | -59.772  | 4.322          | 4.425          | -2.326         | 3.765          | 11.50  | -12.94 | 57.37  |
| NESC Extreme | 9X           | 14X    | Leg13X  | 69.218   | 0.953          | 0.960          | -0.939         | 0.197          | -9.88  | -11.02 | -67.62 |
| NESC Extreme | 9XY          | 14XY   | Leg13XY | 63.899   | 0.644          | 0.653          | 0.037          | -0.652         | 9.95   | -9.34  | -62.43 |
| NESC Extreme | 9Y           | 14Y    | Leg13Y  | -57.640  | 2.743          | 2.784          | 2.768          | 0.306          | -11.69 | -9.23  | 55.75  |

# Overturning Moment Summary For All Load Cases:

| Load Case    | Transverse | Longitudinal | Resultant |
|--------------|------------|--------------|-----------|
|              | Moment     | Moment       | Moment    |
|              | (ft-k)     | (ft-k)       | (ft-k)    |
| NESC Heavy   | 1069.982   |              | 1071.122  |
| NESC Extreme | 2431.749   |              | 2432.012  |

#### Sections Information:

| Section | Top    | ${\tt Bottom}$ | Joint | Member | Tran. Face | Tran. Face | Tran. Face | Long. Face | Long. Face | Long. Face |
|---------|--------|----------------|-------|--------|------------|------------|------------|------------|------------|------------|
| Label   | Z      | Z              | Count | Count  | Top Width  | Bot Width  | Gross Area | Top Width  | Bot Width  | Gross Area |
|         | (ft)   | (ft)           |       |        | (ft)       | (ft)       | (ft^2)     | (ft)       | (ft)       | (ft^2)     |
|         |        |                |       |        |            |            |            |            |            |            |
| 1       | 78.250 | 50.000         | 42    | 145    | 0.00       | 4.00       | 103.000    | 28.00      | 4.00       | 274.125    |
| 2       | 50.000 | 0.000          | 28    | 78     | 4.00       | 20.00      | 600.000    | 4.00       | 20.00      | 600.000    |

<sup>\*\*\*</sup> Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress Printed capacities do not include the strength factor entered for each load case. The Group Summary reports on the member and load case that resulted in maximum usage which may not necessarily be the same as that which produces maximum force.

### Group Summary (Compression Portion):

Group Group Angle Angle Steel Max Usage Max Comp. Comp. Comp. L/R Comp. Comp. RLX RLY RLZ

L/R KL/R Length Curve No. Label Desc. Type Size Strength Usage Cont-Use Control Force Control Capacity Connect. Connect. Comp. No. Of Member rol Τn Load Shear Bearing Member Bolts Comp. Case Capacity Capacity Comp. (ksi) 용 (kips) (kips) (kips) (kips) (ft) \_\_\_\_\_\_ Leg1 Leg1 SAU 2.5X2X0.1875 33.0 14.86 Comp 14.86 Leg1XY -1.504NESC Hea 10.122 18.200 21.094 1.000 1.000 1.000 151.34 151.34 5.385 4 2 Leg2 SAE 4X4X0.3125 33.0 96.10 Tens 92.23 Leg6X -64.295NESC Ext 69.710 109.200 105.469 1.000 1.000 1.000 Lea2 64.48 64.48 4.250 1 6 Leg3 SAE Lea3 4X4X0.4375 33.0 96.12 Comp 96.12 Leg9X -73.586NESC Ext 76.554 0.000 0.000 1.000 1.000 1.000 101.88 101.88 6.664 1 0 Leg4 SAE 5X5X0.375 33.0 96.54 Comp 96.54 Leg13X -70.281NESC Ext 78.526 72.800 168.750 0.500 0.500 0.500 108.74 108.74 17.942 1 XBrace1 SAE 1.75X1.75X0.1875 14.594 18.200 33.0 55.44 Tens 52.82 XBrace2P -7.708NESC Ext 21.094 0.750 0.500 0.500 XBrace1 92.98 99.73 5.315 2 2 XBrace2 SAU 3X2X0.25 33.0 44.57 Tens 36.05 XBrace10P -9.842NESC Ext 28.258 27.300 42.187 0.500 0.750 0.500 XBrace2 91.51 98.63 5.836 2 3 2.5X2.5X0.25 33.0 65.18 Comp 65.18 XBrace13P -11.862NESC Ext 26.663 18.200 28.125 1.000 0.500 0.500 XBrace3 XBrace3 SAE 3 91.07 105.54 5.836 2 XBrace4 SAE 2X2X0.25 33.0 54.78 Comp 54.78 XBrace14Y -8.045NESC Ext 14.684 18.200 28.125 0.791 0.582 0.582 XBrace4 140.10 135.36 7.844 XBrace5 XBrace5 SAE 2X2X0.1875 33.0 62.79 Cross 62.79 XBrace19P -2.697NESC Ext 4.296 9.100 10.547 1.000 0.559 0.559 217.49 217.49 11.183 4 1 10.547 0.772 0.544 0.544 XBrace6 XBrace6 SAE 2.5X2.5X0.1875 33.0 23.73 Tens 20.85 XBrace20XY -1.897NESC Ext 9.190 9.100 167.61 167.61 12.709 4 1 XBrace7 XBrace7 SAE 3X3X0.25 33.0 19.27 Comp 19.27 XBrace23P -1.754NESC Ext 10.760 9.100 14.062 1.000 0.543 0.543 195.71 195.71 15.168 Δ 1 XBrace8 XBrace8 SAU 2X1.5X0.1875 33.0 39.51 Tens 0.00 XBrace25XY 0.000 0.945 18.200 21.094 0.577 0.788 0.577 531.06 433.27 24.697 5 2 33.0 59.13 Tens 41.92 Horz1X -3.814NESC Ext. Horz1 Horizontal 1 SAE 2X2X0.1875 13.406 9.100 10.547 1.000 1.000 1.000

Horz7X -4.292NESC Ext

Arm4Y -2.248NESC Hea

Arm5P -5.623NESC Hea

g64P -0.361NESC Hea

2 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize

g63P -0.684NESC Ext 13.392

XBrace6P -8.584NESC Ext 30.542

Horz3X -7.397NESC Ext 17.545

Arm2P 0.000

33.0 8.61 Comp 8.61 Diagonal 1X -1.685NESC Hea 19.584

33.0 71.53 Tens 0.00 Diagonal 8Y 0.000

33.0 31.12 Tens 0.00 Diagonal 6Y 0.000

11.214

11.400

14.428

40.905

25.851

24.070

1.023

9.100

27.300

9.100

9.100

9.100

9.100

18.200

9.100

18.200

14.062 1.000 0.500 0.500

42.187 1.000 0.500 0.500

10.547 1.000 1.000 1.000

14.062 1.000 1.000 1.000

21.094 1.000 1.000 1.000

14.062 1.000 1.000 1.000

28.125 1.000 0.500 0.500

10.547 0.500 0.750 0.500

33.984 0.750 0.500 0.500

9.100 10.547 0.750 0.500 0.500

9.100 14.062 1.000 1.000 1.000

33.0 47.17 Comp 47.17

33.0 70.01 Tens 0.00

33.0 24.71 Comp 24.71

33.0 30.89 Comp 30.89

33.0 8.15 Tens 7.51

33.0 35.29 Comp 35.29

33.0 89.45 Tens 81.28

36.0 47.17 Comp 47.17

Arm1 DAL

Arm2 SAE

Arm3 SAU

Inner1 SAU

moments): Arm5P Arm5X Arm5XY Arm5Y ??

XBrace1R SAE

5

4

Inner1 SAE 1.75X1.75X0.1875

1

3 1

1

1

3X2.5X0.25

2x3/16

2x1/4

3.5X2.5X0.25

2.5X2X0.1875

2.5X2.5X0.25

3.5x2.5x0.25

2X1.5X0.1875

2X2X0.3125

2X2X0.25

121.83 121.83 4.000 4

182.86 182.86 14.400 4

145.07 145.07 13.153 4 Diag2 Diagonal 2 Bar

Arm1

Arm2

134.18 130.84 12.166

98.95 109.48 5.657

416.55 416.55 20.365

Arm3

Inner1

Inner2

XBrace1R

Horz2 Horizontal 2 SAU

Diag1 Diagonal 1 SAU

29.70 52.27 2.475 2 1 Diag3 Diagonal 3 Bar

48.00 66.00 4.000 2 1

60.53 90.26 4.000 3 1

97.76 108.88 4.000 3 1

81.77 91.33 5.315 2 2 Horz3 Horizontal 3 SAE

### Group Summary (Tension Portion):

| Group                            | Group      | Angle   | Angle                          | Steel     | Max    | Usage   | Мах     | Tension       | Tension Tension | Net       | Tension   | Tension   | Tension  | Length    | No.        |
|----------------------------------|------------|---------|--------------------------------|-----------|--------|---------|---------|---------------|-----------------|-----------|-----------|-----------|----------|-----------|------------|
| No. Hole<br>Label<br>Of Diameter | Desc.      | Туре    | Size                           | Strength  | Usage  | Cont-   | Use     | Control       | Force Control   | Section   | Connect.  | Connect.  | Connect. | Tens.     | Of         |
| Holes                            |            |         |                                |           |        | rol     | In      | Member        | Load            | Capacity  | Shear     | Bearing   | Rupture  | Member    | Bolts      |
| noies                            |            |         |                                | 41 - 13   | ٥      |         | Tens.   |               | Case            |           |           | Capacity  |          | 4513      | Tens.      |
| (in)                             |            |         |                                | (ksi)     | ફ      |         | 7       |               | (kips)          | (kips)    | (kips)    | (kips)    | (kips)   | (ft)      |            |
|                                  |            |         |                                |           |        |         |         |               |                 |           |           |           |          |           |            |
| Leg1                             | Leg1       | SAU     | 2.5X2X0.1875                   | 33.0      | 14.86  | Comp    | 1.46    | Leg1Y         | 0.239NESC Ext   | 17.444    | 18.200    | 21.094    | 16.406   | 5.385     | 2          |
| 1.000 0.6875<br>Leg2             | Leg2       | SAE     | 4X4X0.3125                     | 33 U      | 96.10  | Tong    | 96.10   | 1 0 a 6 V     | 59.146NESC Ext  | 61.546    | 109.200   | 105.469   | 03 750   | 4.250     | 6          |
| 2.490 0.6875                     | цеуг       | SAL     | 47470.3123                     | 33.0      | 90.10  | Tells   | 30.10   | цедот         | J9.140NESC EXC  | 01.540    | 109.200   | 103.409   | 93.730   | 4.230     | 0          |
| Leg3                             | Leg3       | SAE     | 4X4X0.4375                     | 33.0      | 96.12  | Comp    | 85.99   | Leg8Y         | 71.734NESC Ext  | 83.423    | 0.000     | 0.000     | 0.000    | 6.152     | 0          |
| 2.600 0.6875<br>Leg4             | Leq4       | SAE     | 5x5x0.375                      | 33.0      | 96.54  | Comp    | 74.08   | Leg13Y        | 53.932NESC Ext  | 98.030    | 72.800    | 168.750   | 187.500  | 17.942    | 8          |
| 2.480 0.6875                     |            |         |                                |           |        | _       |         | _             |                 |           |           |           |          |           |            |
| XBrace1 2<br>1.000 0.6875        | XBrace1    | SAE 1   | 1.75x1.75x0.1875               | 33.0      | 55.44  | Tens    | 55.44   | XBrace2X      | 7.124NESC Ext   | 14.585    | 18.200    | 21.094    | 12.850   | 5.315     | 2          |
|                                  | XBrace2    | SAU     | 3X2X0.25                       | 33.0      | 44.57  | Tens    | 44.57   | XBrace8X      | 7.926NESC Ext   | 17.783    | 27.300    | 42.187    | 32.812   | 5.836     | 3          |
| 3.440 0.6875<br>XBrace3          | KBrace3    | SAE     | 2.5x2.5x0.25                   | 33 U      | 65.18  | Comp    | 62.58   | VPr20013V     | 11.390NESC Ext  | 30.238    | 18.200    | 28.125    | 21 075   | 5.836     | 2          |
| 1.000 0.6875                     | veraces    | SAL     | 2.3A2.3A0.23                   | 33.0      | 03.10  | COMP    | 02.30   | ABIACEIJA     | 11.390NESC EXC  | 30.230    | 10.200    | 20.125    | 21.075   | 3.030     | 2          |
|                                  | KBrace4    | SAE     | 2X2X0.25                       | 33.0      | 54.78  | Comp    | 42.93   | XBrace14XY    | 7.813NESC Ext   | 22.813    | 18.200    | 28.125    | 21.875   | 7.844     | 2          |
| 1.000 0.6875<br>XBrace5          | XBrace5    | SAE     | 2X2X0.1875                     | 33.0      | 62.79  | Cross   | 36.41   | XBrace18Y     | 2.784NESC Ext   | 17.258    | 9.100     | 10.547    | 7.646    | 11.183    | 1          |
| 1.000 0.6875                     |            |         |                                |           |        |         |         |               |                 |           |           |           |          |           |            |
| XBrace6 X                        | XBrace6    | SAE     | 2.5X2.5X0.1875                 | 33.0      | 23.73  | Tens    | 23.73   | XBrace21Y     | 1.946NESC Ext   | 22.961    | 9.100     | 10.547    | 8.203    | 12.709    | 1          |
|                                  | XBrace7    | SAE     | 3X3X0.25                       | 33.0      | 19.27  | Comp    | 13.45   | XBrace22Y     | 1.224NESC Ext   | 37.663    | 9.100     | 14.062    | 10.937   | 15.168    | 1          |
| 1.000 0.6875<br>XBrace8          | ZD 22 20 0 | SAU     | 2X1.5X0.1875                   | 22 N      | 39.51  | mana    | 20 51   | XBrace24P     | 5.763NESC Ext   | 14.585    | 18.200    | 21.094    | 16 106   | 24.697    | 2          |
| 1.000 0.6875                     | XBrace8    | SAU     | 211.310.10/3                   | 33.0      | 39.31  | rens    | 39.31   | ABLACE24P     | J. / OSNESC EXI | 14.303    | 10.200    | 21.094    | 10.400   | 24.097    | ۷          |
| Horz1 Horizo                     | ontal 1    | SAE     | 2X2X0.1875                     | 33.0      | 59.13  | Tens    | 59.13   | Horz1P        | 4.521NESC Ext   | 17.258    | 9.100     | 10.547    | 7.646    | 4.000     | 1          |
| 1.000 0.6875<br>Horz2 Horiz      | ontal 2    | SAU     | 3X2.5X0.25                     | 33.0      | 47.17  | Comp    | 0.90    | Horz7P        | 0.082NESC Ext   | 30.090    | 9.100     | 14.062    | 9.164    | 14.400    | 1          |
| 1.000 0.6875                     |            |         |                                |           |        | -       |         |               |                 |           |           |           |          |           |            |
| Diag1 Diag<br>1.550 0.6875       | gonal 1    | SAU     | 3.5X2.5X0.25                   | 33.0      | 8.61   | Comp    | 0.00    | Diagonal 1Y   | 0.000           | 34.856    | 27.300    | 42.187    | 32.812   | 13.153    | 3          |
|                                  | gonal 2    | Bar     | 2x3/16                         | 33.0      | 71.53  | Tens    | 71.53   | Diagonal 5P   | 5.228NESC Hea   | 7.309     | 9.100     | 10.547    | 8.490    | 10.589    | 1          |
| 1.000 0.6875                     | ~~~~1 2    | Dom     | 2x1/4                          | 22 N      | 21 12  | mana    | 21 12   | Diagonal 6D   | 2.832NESC Hea   | 9.745     | 9.100     | 14.062    | 11.320   | 4.000     | 1          |
| Diag3 Diag<br>1.000 0.6875       | gonal 3    | Bar     | 2X1/4                          | 33.0      | 31.12  | Tens    | 31.12   | Diagonal 6P   | 2.032NESC nea   | 9.743     | 9.100     | 14.002    | 11.320   | 4.000     | 1          |
| Arm1                             | Arm1       | DAL     | 2.5X2X0.1875                   | 33.0      | 70.01  | Tens    | 70.01   | Arm2P         | 6.371NESC Hea   | 27.231    | 9.100     | 21.094    | 17.121   | 4.000     | 1          |
| 4.000 0.6875<br>Arm2             | Arm2       | SAE     | 2.5X2.5X0.25                   | 33.0      | 24.71  | Comp    | 0.81    | Arm8P         | 0.148NESC Ext   | 30.238    | 18.200    | 28.125    | 40.441   | 4.000     | 2          |
| 1.000 0.6875                     |            |         |                                |           |        | -       |         |               |                 |           |           |           |          |           |            |
| Arm3                             | Arm3       | SAU     | 3.5X2.5X0.25 damaging moment e |           | 30.89  | _       | 0.00    | Arm6Y         | 0.000           | 34.345    |           | 28.125    |          | 4.000     | 2<br>Arm5P |
| Arm5X Arm5XY Arm                 |            | татту ( | amaging moment e               | WISCS III | cue IC | ,TTOWII | ig memi | Sers (make Su | re your system  | TO WELL C | angura te | ea co min | ze mome  | =1100). 1 | TIMOP      |
| Inner1<br>1.000 0.6875           | Inner1     | SAE 1   | 1.75X1.75X0.1875               | 33.0      | 8.15   | Tens    | 8.15    | g63X          | 0.497NESC Ext   | 14.585    | 9.100     | 10.547    | 6.100    | 5.657     | 1          |

| Inner2                                       | Inner1  | SAU | 2X1.5X0.1875 | 33.0 35.29 Comp 4.98  | g64X     | 0.381NESC Ext | 14.585 | 9.100  | 10.547 | 7.646 20.365 | 1 |
|----------------------------------------------|---------|-----|--------------|-----------------------|----------|---------------|--------|--------|--------|--------------|---|
|                                              | Brace1R | SAE | 2X2X0.3125   | 36.0 47.17 Comp 46.21 | XBrace6X | 8.410NESC Ext | 30.299 | 18.200 | 33.984 | 20.543 5.315 | 2 |
| 1.000 0.6875<br>Horz3 Horizo<br>1.000 0.6875 | ontal 3 | SAE | 2x2x0.25     | 33.0 89.45 Tens 89.45 | Horz3P   | 8.140NESC Ext | 22.813 | 9.100  | 14.062 | 10.195 4.000 | 1 |

<sup>\*\*\*</sup> Maximum Stress Summary for Each Load Case

# Summary of Maximum Usages by Load Case:

| Load Case    | Maximum<br>Usage % | Element<br>Label |       |
|--------------|--------------------|------------------|-------|
| NESC Heavy   | 71.53              | Diagonal 5P      | Angle |
| NESC Extreme | 96.54              | Leg13X           | Angle |

# Summary of Insulator Usages:

| Insulator<br>Label | Insulator<br>Type | Maximum<br>Usage % | Load Case    | Weight<br>(lbs) |
|--------------------|-------------------|--------------------|--------------|-----------------|
| Clamp1             | Clamp             | 3.09               | NESC Heavy   | 0.0             |
| Clamp2             | Clamp             | 3.03               | NESC Heavy   | 0.0             |
| Clamp3             | Clamp             | 4.29               | NESC Heavy   | 0.0             |
| Clamp4             | Clamp             | 4.27               | NESC Heavy   | 0.0             |
| Clamp5             | Clamp             | 4.39               | NESC Heavy   | 0.0             |
| Clamp6             | Clamp             | 4.37               | NESC Heavy   | 0.0             |
| Clamp7             | Clamp             | 4.32               | NESC Heavy   | 0.0             |
| Clamp8             | Clamp             | 4.29               | NESC Heavy   | 0.0             |
| Clamp9             | Clamp             | 15.85              | NESC Extreme | 0.0             |
| Clamp10            | Clamp             | 1.45               | NESC Extreme | 0.0             |
| Clamp11            | Clamp             | 1.57               | NESC Extreme | 0.0             |
| Clamp12            | Clamp             | 2.07               | NESC Extreme | 0.0             |
| Clamp13            | Clamp             | 2.20               | NESC Extreme | 0.0             |
| Clamp14            | Clamp             | 2.81               | NESC Extreme | 0.0             |
| Clamp15            | Clamp             | 4.91               | NESC Heavy   | 0.0             |
| Clamp16            | Clamp             | 19.60              | NESC Extreme | 0.0             |
| Clamp17            | Clamp             | 1.45               | NESC Extreme | 0.0             |
| Clamp18            | Clamp             | 1.57               | NESC Extreme | 0.0             |
| Clamp19            | Clamp             | 2.07               | NESC Extreme | 0.0             |
| Clamp20            | Clamp             | 2.20               | NESC Extreme | 0.0             |
| Clamp21            | Clamp             | 2.81               | NESC Extreme | 0.0             |
| Clamp22            | Clamp             | 4.67               | NESC Heavy   | 0.0             |
| Clamp23            | Clamp             | 12.63              | NESC Extreme | 0.0             |
| Clamp24            | Clamp             | 17.21              | NESC Extreme | 0.0             |
| Clamp25            | Clamp             | 14.98              | NESC Extreme | 0.0             |
| Clamp26            | Clamp             | 18.23              | NESC Extreme | 0.0             |
| Clamp27            | Clamp             |                    | NESC Extreme | 0.0             |
| Clamp28            | Clamp             | 8.31               | NESC Heavy   | 0.0             |
| Clamp29            | Clamp             | 0.26               | NESC Heavy   | 0.0             |
| Clamp30            | Clamp             | 0.36               | NESC Heavy   | 0.0             |
| Clamp31            | Clamp             | 0.91               | NESC Extreme | 0.0             |
| Clamp32            | Clamp             | 0.66               | NESC Extreme | 0.0             |

| Clamp33 | Clamp | 0.66 | NESC Extreme | 0.0 |
|---------|-------|------|--------------|-----|
| Clamp34 | Clamp | 1.37 | NESC Heavy   | 0.0 |
| Clamp35 | Clamp | 0.25 | NESC Extreme | 0.0 |
| Clamp36 | Clamp | 0.29 | NESC Heavy   | 0.0 |
| Clamp37 | Clamp | 0.91 | NESC Extreme | 0.0 |
| Clamp38 | Clamp | 0.66 | NESC Extreme | 0.0 |
| Clamp39 | Clamp | 0.66 | NESC Extreme | 0.0 |
| Clamp40 | Clamp | 1.16 | NESC Heavy   | 0.0 |
| Clamp43 | Clamp | 0.25 | NESC Extreme | 0.0 |
| Clamp44 | Clamp | 0.25 | NESC Extreme | 0.0 |
|         |       |      |              |     |

\*\*\* Weight of structure (lbs):
Weight of Angles\*Section DLF: 8490.0 Total: 8490.0

\*\*\* End of Report

Project Name: 13305.000 - Meriden, CT

Project Notes: CL&P Structure # 783/ AT&T CT2117

Project File: J:\Jobs\1330500.WI\04 Structural\Backup Documentation\Calcs\Rev (4)\PLS Tower\pls tower - reinforced.tow

Date run : 10:20:30 AM Monday, October 06, 2014

by : Tower Version 12.50
Licensed to : Centek Engineering Inc

Successfully performed nonlinear analysis

Member "Leg6P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg6X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg6XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg6Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg11P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg11X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg11XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end. edge and spacing distances will be checked. ?? Member "Leg11Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg13P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg13X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg13XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Leg13Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace8P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace8X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace8XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace8Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace9P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace9X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace9XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace9Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace10P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace10X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end,

edge and spacing distances will be checked. ?? Member "XBrace10XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace10Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace11P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace11X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace11XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace11Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace12P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace12X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace12XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace12Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace13P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace13X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace13XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "XBrace13Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Arm5P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Arm5X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Arm5XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Arm5Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Arm6P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Arm6Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Diagonal 1P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Diagonal 1X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Diagonal 1XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? Member "Diagonal 1Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ?? The model has 46 warnings. ??



Nonlinear convergence parameters: Use Standard Parameters Tension only member maximum compression load as a percent of compression capacity: 100%

Member check option: ASCE 10

Connection rupture check: ASCE 10

Crossing diagonal check: ASCE 10 [Alternate Unsupported RLOUT = 1] Included angle check: None

Climbing load check: None

Redundant members checked with: Actual Force

### Joints Geometry:

| Joint<br>Label | Symmetry Code | X Coord. Y<br>(ft) | Coord. | Z Coord.<br>(ft) | X Disp.<br>Rest. | Y Disp.<br>Rest. | Z Disp.<br>Rest. | X Rot.<br>Rest. | Y Rot.<br>Rest. | Z Rot.<br>Rest. |
|----------------|---------------|--------------------|--------|------------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|
| 1P             | X-Symmetry    | 0                  | -2     | 78.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 2P             | XY-Symmetry   | 2                  | -2     | 73.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 7P             | XY-Symmetry   | 2                  | -2     | 54.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 8P             | XY-Symmetry   | 2                  | -2     | 50               | Free             | Free             | Free             | Free            | Free            | Free            |
| 9P             | XY-Symmetry   | 10                 | -10    | 0                | Fixed            | Fixed            | Fixed            | Fixed           | Fixed           | Fixed           |
| 15P            | X-Symmetry    | 0                  | -14    | 78.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 16P            | X-Symmetry    | 0                  | -10    | 73.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 17P            | X-Symmetry    | 0                  | -14    | 62.75            | Free             | Free             | Free             | Free            | Free            | Free            |
| 18P            | X-Symmetry    | 0                  | -10    | 54.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 19P            | XY-Symmetry   | 2                  | 3.75   | 64.5             | Free             | Free             | Free             | Free            | Free            | Free            |
| 1X             | X-Gen         | 0                  | 2      | 78.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 2X             | X-GenXY       | 2                  | 2      | 73.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 2XY            | XY-GenXY      | -2                 | 2      | 73.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 2 Y            | Y-GenXY       | -2                 | -2     | 73.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 7 X            | X-GenXY       | 2                  | 2      | 54.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 7XY            | XY-GenXY      | -2                 | 2      | 54.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 7 Y            | Y-GenXY       | -2                 | -2     | 54.25            | Free             | Free             | Free             | Free            | Free            | Free            |
| 8X             | X-GenXY       | 2                  | 2      | 50               | Free             | Free             | Free             | Free            | Free            | Free            |
| 8XY            | XY-GenXY      | -2                 | 2      | 50               | Free             | Free             | Free             | Free            | Free            | Free            |
| 84             | Y-GenXY       | -2                 | -2     | 50               | Free             | Free             | Free             | Free            | Free            | Free            |
| 9X             | X-GenXY       | 10                 | 10     | 0                | Fixed            | Fixed            | Fixed            | Fixed           | Fixed           | Fixed           |
| 9XY            | XY-GenXY      | -10                | 10     | 0                | Fixed            | Fixed            | Fixed            | Fixed           | Fixed           | Fixed           |

| 9Y   | Y-GenXY  | -10 | -10   | 0     | Fixed | Fixed | Fixed | Fixed | Fixed | Fixed |
|------|----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| 15X  | X-Gen    | 0   | 14    | 78.25 | Free  | Free  | Free  | Free  | Free  | Free  |
| 16X  | X-Gen    | 0   | 10    | 73.25 | Free  | Free  | Free  | Free  | Free  | Free  |
| 17X  | X-Gen    | 0   | 14    | 62.75 | Free  | Free  | Free  | Free  | Free  | Free  |
| 18X  | X-Gen    | 0   | 10    | 54.25 | Free  | Free  | Free  | Free  | Free  | Free  |
| 19X  | X-GenXY  | 2   | -3.75 | 64.5  | Free  | Free  | Free  | Free  | Free  | Free  |
| 19XY | XY-GenXY | -2  | -3.75 | 64.5  | Free  | Free  | Free  | Free  | Free  | Free  |
| 19Y  | Y-GenXY  | -2  | 3.75  | 64.5  | Free  | Free  | Free  | Free  | Free  | Free  |

# Secondary Joints:

| Joint      | Symmetry                   | _          |       | Fraction | Elevation      | X Disp.      | Y Disp.      | Z Disp.      | X Rot.       | Y Rot.       | Z Rot.       |
|------------|----------------------------|------------|-------|----------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Label      | Code                       | Joint      | Joint |          |                | Rest.        | Rest.        | Rest.        | Rest.        | Rest.        | Rest.        |
|            |                            |            |       |          | (ft)           |              |              |              |              |              |              |
| 20         |                            | ۰          | 7P    |          |                |              |              |              |              | П            | П            |
| 3S         | XY-Symmetry                | 2P<br>2P   | 7 P   | 0        | 69.75<br>66.25 | Free         | Free         | Free         | Free         | Free         | Free         |
| 4S<br>5S   | XY-Symmetry<br>XY-Symmetry | 2P<br>2P   | 7 P   | 0        | 62.75          | Free         | Free         | Free         | Free         | Free         | Free         |
| 55<br>6S   | XY-Symmetry                |            | 7 P   | 0        | 58.5           | Free<br>Free | Free<br>Free | Free<br>Free | Free<br>Free | Free<br>Free | Free<br>Free |
| 10S        | XY-Symmetry                | 2 F<br>8 P | 9P    | 0        | 44             | Free         | Free         | Free         | Free         | Free         | Free         |
| 103<br>11S | XY-Symmetry                |            | 9 P   | 0        | 37.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 12S        | XY-Symmetry                | 8P         | 9P    | 0        | 31             | Free         | Free         | Free         | Free         | Free         | Free         |
| 13S        | XY-Symmetry                | 8P         | 9P    | 0        | 24.83          | Free         | Free         | Free         | Free         | Free         | Free         |
| 14S        | XY-Symmetry                | 8P         | 9P    | 0        | 17.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 3X         | X-GenXY                    | 2P         | 7P    | 0        | 69.75          | Free         | Free         | Free         | Free         | Free         | Free         |
| 3XY        | XY-GenXY                   | 2P         | 7P    | 0        | 69.75          | Free         | Free         | Free         | Free         | Free         | Free         |
| 3Y         | Y-GenXY                    | 2 P        | 7P    | 0        | 69.75          | Free         | Free         | Free         | Free         | Free         | Free         |
| 4 X        | X-GenXY                    | 2P         | 7 P   | 0        | 66.25          | Free         | Free         | Free         | Free         | Free         | Free         |
| 4XY        | XY-GenXY                   | 2P         | 7P    | 0        | 66.25          | Free         | Free         | Free         | Free         | Free         | Free         |
| 4 Y        | Y-GenXY                    | 2P         | 7P    | 0        | 66.25          | Free         | Free         | Free         | Free         | Free         | Free         |
| 5X         | X-GenXY                    | 2P         | 7P    | 0        | 62.75          | Free         | Free         | Free         | Free         | Free         | Free         |
| 5XY        | XY-GenXY                   | 2P         | 7P    | 0        | 62.75          | Free         | Free         | Free         | Free         | Free         | Free         |
| 5Y         | Y-GenXY                    | 2P         | 7P    | 0        | 62.75          | Free         | Free         | Free         | Free         | Free         | Free         |
| 6X         | X-GenXY                    | 2P         | 7P    | 0        | 58.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 6XY        | XY-GenXY                   | 2P         | 7P    | 0        | 58.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 6Y         | Y-GenXY                    | 2P         | 7P    | 0        | 58.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 10X        | X-GenXY                    | 8P         | 9P    | 0        | 44             | Free         | Free         | Free         | Free         | Free         | Free         |
| 10XY       | XY-GenXY                   | 8P         | 9P    | 0        | 44             | Free         | Free         | Free         | Free         | Free         | Free         |
| 10Y        | Y-GenXY                    | 8P         | 9P    | 0        | 44             | Free         | Free         | Free         | Free         | Free         | Free         |
| 11X        | X-GenXY                    | 8P         | 9P    | 0        | 37.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 11XY       | XY-GenXY                   | 8P         | 9P    | 0        | 37.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 11Y        | Y-GenXY                    | 8P         | 9P    | 0        | 37.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 12X        | X-GenXY                    | 8P         | 9P    | 0        | 31             | Free         | Free         | Free         | Free         | Free         | Free         |
| 12XY       | XY-GenXY                   | 8P         | 9P    | 0        | 31             | Free         | Free         | Free         | Free         | Free         | Free         |
| 12Y        | Y-GenXY                    | 8P         | 9P    | 0        | 31             | Free         | Free         | Free         | Free         | Free         | Free         |
| 13X        | X-GenXY                    | 8P         | 9P    | 0        | 24.83          | Free         | Free         | Free         | Free         | Free         | Free         |
| 13XY       | XY-GenXY                   | 8P         | 9P    | 0        | 24.83          | Free         | Free         | Free         | Free         | Free         | Free         |
| 13Y        | Y-GenXY                    | 8P         | 9P    | 0        | 24.83          | Free         | Free         | Free         | Free         | Free         | Free         |
| 14X        | X-GenXY                    | 8P         | 9P    | 0        | 17.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 14XY       | XY-GenXY                   | 8P         | 9P    | 0        | 17.5           | Free         | Free         | Free         | Free         | Free         | Free         |
| 14Y        | Y-GenXY                    | 8P         | 9P    | 0        | 17.5           | Free         | Free         | Free         | Free         | Free         | Free         |

The model contains 30 primary and 36 secondary joints for a total of 66 joints.

# Steel Material Properties:

| Steel    | Modulus    | Yield  | Ultimate |      | Member |      | Member | Member  | Member  | Member  | Member  |
|----------|------------|--------|----------|------|--------|------|--------|---------|---------|---------|---------|
| Material | of         | Stress | Stress   | All. | Stress | All. | Stress | Rupture | Rupture | Bearing | Bearing |
| Label    | Elasticity | Fy     | Fu       |      | Hyp. 1 |      | Нур. 2 | Hyp. 1  | Нур. 2  | Нур. 1  | Hyp. 2  |

| <br>     | (ksi)    | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) |
|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| <br>A 36 | 2.9e+004 | 36    | 58    | 0     | 0     | 0     | 0     | 0     | 0     |
| Α7       | 2.9e+004 | 33    | 60    | 0     | 0     | 0     | 0     | 0     | 0     |

# Bolt Properties:

| Bolt     | Bolt     | Hole     | Ultimate | Default  | Default | Shear    | Shear    |
|----------|----------|----------|----------|----------|---------|----------|----------|
| Label    | Diameter | Diameter | Shear    | End      | Bolt    | Capacity | Capacity |
|          |          |          | Capacity | Distance | Spacing | Нур. 1   | Нур. 2   |
|          | (in)     | (in)     | (kips)   | (in)     | (in)    | (kips)   | (kips)   |
| 5/8 A394 | 0.625    | 0.6875   | 9.1      | 1.125    | 1.5     | 0        | 0        |

Number Bolts Used By Type:

Bolt Number Type Bolts 5/8 A394 375

# Angle Properties:

| Angle<br>Type | -                | Long<br>Leg |      | Thick. | Unit<br>Weight | Gross<br>Area |       | Gyration   | Gyration   | Radius of<br>Gyration | of     | Wind<br>Width | Edge  | Edge          |        | Section<br>Modulus |
|---------------|------------------|-------------|------|--------|----------------|---------------|-------|------------|------------|-----------------------|--------|---------------|-------|---------------|--------|--------------------|
|               |                  | (in)        | (in) | (in)   | (lbs/ft)       | (in^2)        |       | Rx<br>(in) | Ry<br>(in) | Rz<br>(in)            | Angles | (in)          | (in)  | Dist.<br>(in) | Factor | (in^3)             |
| SAE           | 5X5X0.375        | 5           | 5    | 0.375  | 12.3           | 3.61          | 11    | 1.56       | 1.56       | 0.99                  | 1      | 5             | 2.5   | 0             | 1.0000 | 0                  |
| SAE           | 4X4X0.4375       | 4           | 4    | 0.4375 | 11.3           | 3.31          | 7.29  | 1.23       | 1.23       | 0.785                 | 1      | 4             | 2     | 0             | 1.0000 | 0                  |
| SAE           | 4X4X0.3125       | 4           | 4    | 0.3125 | 8.2            | 2.4           | 10.6  | 1.24       | 1.24       | 0.791                 | 1      | 4             | 2     | 0             | 1.0000 | 0                  |
| SAE           | 3X3X0.25         | 3           | 3    | 0.25   | 4.9            | 1.44          | 9.75  | 0.93       | 0.93       | 0.592                 | 1      | 3             | 1.5   | 0             | 1.0000 | 0                  |
| SAE           | 2.5x2.5x0.25     | 2.5         | 2.5  | 0.25   | 4.1            | 1.19          | 7.75  | 0.769      | 0.769      | 0.491                 | 1      | 2.5           | 1.25  | 0             | 1.0000 | 0                  |
| SAE           | 2.5X2.5X0.1875   | 2.5         | 2.5  | 0.1875 | 3.07           | 0.902         | 10.67 | 0.778      | 0.778      | 0.495                 | 1      | 2.5           | 1.25  | 0             | 1.0000 | 0                  |
| SAE           | 2X2X0.3125       | 2           | 2    | 0.3125 | 3.92           | 1.15          | 3.8   | 0.601      | 0.601      | 0.39                  | 1      | 2             | 1     | 0             | 1.0000 | 0                  |
| SAE           | 2X2X0.25         | 2           | 2    | 0.25   | 3.19           | 0.94          | 5     | 0.609      | 0.609      | 0.391                 | 1      | 2             | 1     | 0             | 1.0000 | 0                  |
| SAE           | 2X2X0.1875       | 2           | 2    | 0.1875 | 2.44           | 0.71          | 8     | 0.617      | 0.617      | 0.394                 | 1      | 2             | 1     | 0             | 1.0000 | 0                  |
| SAE           | 1.75X1.75X0.1875 | 1.75        | 1.75 | 0.1875 | 2.12           | 0.62          | 6     | 0.537      | 0.537      | 0.343                 | 1      | 1.75          | 0.875 | 0             | 1.0000 | 0                  |
| SAU           | 3.5x2.5x0.25     | 3.5         | 2.5  | 0.25   | 4.9            | 1.44          | 11.25 | 1.12       | 0.735      | 0.544                 | 1      | 3.5           | 1.25  | 0             | 1.0000 | 0                  |
| SAU           | 3X2.5X0.25       | 3           | 2.5  | 0.25   | 4.5            | 1.31          | 9.5   | 0.945      | 0.753      | 0.528                 | 1      | 3             | 1.25  | 0             | 1.0000 | 0                  |
| SAU           | 3X2X0.25         | 3           | 2    | 0.25   | 4.1            | 1.19          | 9.75  | 0.957      | 0.574      | 0.435                 | 1      | 3             | 1     | 0             | 1.0000 | 0                  |
| SAU           | 2.5X2X0.1875     | 2.5         | 2    | 0.1875 | 2.75           | 0.81          | 10.67 | 0.793      | 0.6        | 0.427                 | 1      | 2.5           | 1     | 0             | 1.0000 | 0                  |
| SAU           | 2X1.5X0.1875     | 2           | 1.5  | 0.1875 | 2.12           | 0.62          | 8.33  | 0.632      | 0.44       | 0.322                 | 1      | 2             | 0.75  | 0             | 1.0000 | 0                  |
| DAL           | 2.5X2X0.1875     | 2.5         | 2    | 0.1875 | 5.5            | 1.62          | 10.67 | 0.793      | 0.923      | 0.793                 | 2      | 2.5           | 1     | 0             | 1.0000 | 0                  |
| Bar           | 2x3/16           | 2           | 0    | 0.1875 | 1.28           | 0.375         | 10.67 | 1          | 1          | 1                     | 1      | 2             | 0     | 0             | 0.0000 | 0                  |
| Bar           | 2x1/4            | 2           | 0    | 0.25   | 1.7            | 0.5           | 8     | 1          | 1          | 1                     | 1      | 2             | 0     | 0             | 0.0000 | 0                  |

## Angle Groups:

| Group<br>Label | Group<br>Description | Angle<br>Type | Angle<br>Size    | Material<br>Type | Element<br>Type | Group<br>Type     | Optimize<br>Group | Allow. Add. Angle Width For Optimize (in) |
|----------------|----------------------|---------------|------------------|------------------|-----------------|-------------------|-------------------|-------------------------------------------|
| Leg1           | Leg1                 | SAU           | 2.5X2X0.1875     | A7               | Truss           | Other             | None              | 0.000                                     |
| Leg2           | Leg2                 | SAE           | 4X4X0.3125       | A7               | Beam            | Leg               | None              | 0.000                                     |
| Leg3           | Leg3                 | SAE           | 4X4X0.4375       | A7               | Beam            | Leg               | None              | 0.000                                     |
| Leg4           | Leg4                 | SAE           | 5x5x0.375        | A7               | Beam            | Leg               | None              | 0.000                                     |
| XBrace1        | XBrace1              | SAE           | 1.75X1.75X0.1875 | A7               | Truss           | Crossing Diagonal | None              | 0.000                                     |

| _        | _            |     |                  | _    |        |                   |      |       |
|----------|--------------|-----|------------------|------|--------|-------------------|------|-------|
| XBrace2  | XBrace2      | SAU | 3X2X0.25         | A7   | Truss  | Crossing Diagonal | None | 0.000 |
| XBrace3  | XBrace3      | SAE | 2.5X2.5X0.25     | A7   | Truss  | Crossing Diagonal | None | 0.000 |
| XBrace4  | XBrace4      | SAE | 2X2X0.25         | A7   | Truss  | Crossing Diagonal | None | 0.000 |
| XBrace5  | XBrace5      | SAE | 2X2X0.1875       | A7   | Truss  | Crossing Diagonal | None | 0.000 |
| XBrace6  | XBrace6      | SAE | 2.5X2.5X0.1875   | A7   | Truss  | Crossing Diagonal | None | 0.000 |
| XBrace7  | XBrace7      | SAE | 3x3x0.25         | A7   | Truss  | Crossing Diagonal | None | 0.000 |
| XBrace8  | XBrace8      | SAU | 2X1.5X0.1875     | A7   | T-Only | Other             | None | 0.000 |
| Horz1    | Horizontal 1 | SAE | 2X2X0.1875       | A7   | Truss  | Other             | None | 0.000 |
| Horz2    | Horizontal 2 | SAU | 3X2.5X0.25       | A7   | Truss  | Other             | None | 0.000 |
| Diag1    | Diagonal 1   | SAU | 3.5X2.5X0.25     | A7   | Beam   | Other             | None | 0.000 |
| Diag2    | Diagonal 2   | Bar | 2x3/16           | A7   | Truss  | Other             | None | 0.000 |
| Diag3    | Diagonal 3   | Bar | 2x1/4            | A7   | Truss  | Other             | None | 0.000 |
| Arm1     | Arm1         | DAL | 2.5X2X0.1875     | A7   | Beam   | Other             | None | 0.000 |
| Arm2     | Arm2         | SAE | 2.5X2.5X0.25     | A7   | Beam   | Other             | None | 0.000 |
| Arm3     | Arm3         | SAU | 3.5X2.5X0.25     | A7   | Beam   | Other             | None | 0.000 |
| Inner1   | Inner1       | SAE | 1.75X1.75X0.1875 | A7   | Truss  | Other             | None | 0.000 |
| Inner2   | Inner1       | SAU | 2X1.5X0.1875     | A7   | T-Only | Other             | None | 0.000 |
| XBrace1R | XBrace1R     | SAE | 2X2X0.3125       | A 36 | Truss  | Crossing Diagonal | None | 0.000 |
| Horz3    | Horizontal 3 | SAE | 2x2x0.25         | A7   | Truss  | Other             | None | 0.000 |

### Aggregate Angle Information:

Note: Estimate of surface area reported for painting purposes, not wind loading.

| Angle<br>Type                               | Angle<br>Size                                                                                                                                                                                                                                     | Material<br>Type                                                 |                                                                                                                   | Total<br>Surface Area<br>(ft^2) | Total<br>Weight<br>(lbs) |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAU SAE | 2.5x2x0.1875<br>4x4x0.3125<br>4x4x0.4375<br>5x5x0.375<br>1.75x1.75x0.1875<br>2x2x0.3125<br>3x2x0.25<br>2.5x2.5x0.25<br>2x2x0.25<br>2x2x0.1875<br>2.5x2.5x0.1875<br>3x3x0.25<br>2x1.5x0.1875<br>3x2.5x0.25<br>2x5x2.5x0.25<br>2x3x0.25<br>2x3x0.25 | A7<br>A7<br>A 36<br>A7<br>A7<br>A7<br>A7<br>A7<br>A7<br>A7<br>A7 | 76.00<br>120.23<br>101.83<br>114.61<br>85.04<br>93.38<br>128.66<br>147.39<br>121.46<br>101.67<br>121.34<br>238.30 |                                 |                          |
| Bar                                         | 2x1/4                                                                                                                                                                                                                                             | A7                                                               | 16.00                                                                                                             | 5.33                            | 27.20                    |

#### Sections:

The adjustment factors below only apply to dead load and wind areas that are calculated for members in the model. They do not apply to equipment or to manually input dead load and drag areas.

| Section | Joint    | Dead    | Transverse  | Longitudinal | Transverse  | Longitudinal | Af Flat  | Ar Round | Transverse  | Longitudinal | SAPS Angle  | SAPS Round  | Force |
|---------|----------|---------|-------------|--------------|-------------|--------------|----------|----------|-------------|--------------|-------------|-------------|-------|
| Label   | Defining | Load    | Drag x Area | Drag x Area  | Area Factor | Area Factor  | Factor   | Factor   | Drag x Area | Drag x Area  | Drag x Area | Drag x Area | Solid |
|         | Section  | Adjust. | Factor      | Factor       | (CD From    | (CD From     | For Face | For Face | Factor      | Factor       | Factor      | Factor      | Face  |
|         | Bottom   | Factor  | For Face    | For Face     | Code)       | Code)        | EIA Only | EIA Only | For All     | For All      |             |             |       |
|         |          |         |             |              |             |              |          |          |             |              |             |             |       |
| 1       | 8P       | 1.050   | 3.300       | 3.300        | 1.100       | 1.100        | 0.000    | 0.000    | 1.000       | 1.000        | 0.000       | 0.000       | None  |
| 2       | 9P       | 1.050   | 3.300       | 3.300        | 1.100       | 1.100        | 0.000    | 0.000    | 1.000       | 1.000        | 0.000       | 0.000       | None  |

### Angle Member Connectivity:

Group Section

Member

| Bolt  | Shear Ter      | nsion Rest. | Symmetry      | OLIGIN | Liid  | LCC. | nesc. | Macio I | acio i | Na CIO | DOIL    | "     | " DOIC | w bliedi | Comine   | CC 511 | 710         | Long  | ши    |  |
|-------|----------------|-------------|---------------|--------|-------|------|-------|---------|--------|--------|---------|-------|--------|----------|----------|--------|-------------|-------|-------|--|
|       | Label          | Label Label | Code          | Joint  | Joint | Code | Code  | RLX     | RLY    | RLZ    | Type    | Bolts | Holes  | Planes   | L        | eg E   | dge         | Edge  | Dist. |  |
| Spaci | ng Path        | Path Coef.  |               |        |       |      |       |         |        |        |         |       |        |          |          | Di     | e+          | Dist. |       |  |
| Lengt | h Length       |             |               |        |       |      |       |         |        |        |         |       |        |          |          | DI.    | <b>3</b> C. | DISC. |       |  |
| (÷-)  | (÷-)           | /÷->        |               |        |       |      |       |         |        |        |         |       |        |          |          | (:     | in)         | (in)  | (in)  |  |
| (in)  | (in)<br>       | (in)<br>    |               |        |       |      |       |         |        |        |         |       |        |          |          |        |             |       |       |  |
|       |                |             |               |        |       |      |       |         |        |        |         |       |        |          |          |        |             |       |       |  |
| 3.5   | Leg1P<br>0     | Leg1<br>0 0 | XY-Symmetry   | 1P     | 2P    | 3    | 4     | 1       | 1      | 1 5/8  | A394    | 2     | 1      | 1        | Short on | ly 0.  | 375         | 0     | 0.875 |  |
| 3.3   | Leg1X          | Leg1        | X-GenXY       | 1X     | 2X    | 3    | 4     | 1       | 1      | 1 5/8  | A394    | 2     | 1      | 1        | Short on | ly 0.  | 875         | 0     | 0.875 |  |
| 3.5   | 0              | 0 0         |               | 1      | 0     | 2    |       | -       | -      | 1 5/0  | 7004    | 0     | -      | -        | G1 .     |        | 075         | 0     | 0 075 |  |
| 3.5   | Leg1XY<br>0    | Leg1<br>0 0 | XY-GenXY      | 1X     | 2XY   | 3    | 4     | 1       | 1      | 1 5/8  | A394    | 2     | 1      | 1        | Short on | TA 0.  | 3/5         | 0     | 0.875 |  |
| 0.0   | Leg1Y          | Leg1        | Y-GenXY       | 1P     | 2Y    | 3    | 4     | 1       | 1      | 1 5/8  | A394    | 2     | 1      | 1        | Short on | ly 0.  | 875         | 0     | 0.875 |  |
| 3.5   | 0<br>T o a 2 D | 0 0<br>Leg2 | XY-Symmetry   | 2P     | 3S    | 1    | 4     | 1       | 1      | 1 5/8  | 7301    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | Leg2P<br>0     | 0 0         | X1-3ymmetry   | 2.5    | 25    | 1    | 4     | Τ.      | 1      | 1 3/0  | AJJ4    | U     | 2.5    | U        |          |        | U           | 0     | U     |  |
|       | Leg2X          | Leg2        | X-GenXY       | 2 X    | 3X    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0<br>Leg2XY    | 0 0<br>Leg2 | XY-GenXY      | 2XY    | 3XY   | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0              | 0 0         |               |        |       |      |       |         |        | , -    |         |       |        |          |          |        |             |       |       |  |
| 0     | Leg2Y<br>0     | Leg2<br>0 0 | Y-GenXY       | 2 Y    | 3Y    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| U     | Leg3P          | Leg2        | XY-Symmetry   | 38     | 4S    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0              | 0 0         |               |        |       |      |       |         |        |        |         |       |        | _        |          |        |             |       |       |  |
| 0     | Leg3X<br>O     | Leg2<br>0 0 | X-GenXY       | 3X     | 4X    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| Ü     | Leg3XY         | Leg2        | XY-GenXY      | 3XY    | 4XY   | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0              | 0 0         | V CVV         | 3 Y    | 437   | 1    | 4     | 1       | 1      | 1 5/0  | 7 2 0 4 | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | Leg3Y<br>0     | Leg2<br>0 0 | Y-GenXY       | 31     | 4 Y   | 1    | 4     | Τ.      | 1      | 1 5/8  | A394    | 0     | 2.5    | U        |          |        | U           | U     | U     |  |
|       | Leg4P          | Leg2        | XY-Symmetry   | 4S     | 5S    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0<br>Leq4X     | 0 0<br>Leg2 | X-GenXY       | 4X     | 5x    | 1    | 4     | 1       | 1      | 1 5/8  | Z394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0              | 0 0         | A GCHAI       | 721    | 571   | _    | -7    | _       | _      | 1 3/0  | 11554   | O     | 2.5    | O        |          |        | O           | O     | O     |  |
| 0     | Leg4XY         | Leg2        | XY-GenXY      | 4XY    | 5XY   | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0<br>Leq4Y     | 0 0<br>Leg2 | Y-GenXY       | 4 Y    | 5Y    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0              | 0 0         |               |        |       |      |       |         |        |        |         |       |        |          |          |        |             |       |       |  |
| 0     | Leg5P<br>0     | Leg2<br>0 0 | XY-Symmetry   | 5S     | 6S    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| Ü     | Leg5X          | Leg2        | X-GenXY       | 5X     | 6X    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0              | 0 0         | VV 0 - VV     | F 1717 | 61777 | 1    | 4     | -1      | 1      | 1 5/0  | 7.004   | 0     | 0 5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | Leg5XY<br>0    | Leg2<br>0 0 | XY-GenXY      | 5XY    | 6XY   | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
|       | Leg5Y          | Leg2        | Y-GenXY       | 5 Y    | 6Y    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 0     | 2.5    | 0        |          |        | 0           | 0     | 0     |  |
| 0     | 0<br>Leg6P     | 0 0<br>Leg2 | XY-Symmetry   | 6S     | 7P    | 1    | 4     | 1       | 1      | 1 5/8  | 7301    | 6     | 2.49   | 2        | Do       | th :   | 1.5         | 2.75  | 1     |  |
| 2.5   | 0              | 0 0         | VI-9 Aumert A | 05     | 12    | 1    | 4     | Τ       | Т      | 1 3/0  | A334    | 0     | 2.49   | ۷        | ьо       | U11 .  | 1.0         | 2.13  | 1     |  |
| 0 =   | Leg6X          | Leg2        | X-GenXY       | 6X     | 7X    | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 6     | 2.49   | 2        | Во       | th :   | 1.5         | 2.75  | 1     |  |
| 2.5   | 0<br>Leg6XY    | 0 0<br>Leg2 | XY-GenXY      | 6XY    | 7XY   | 1    | 4     | 1       | 1      | 1 5/8  | A394    | 6     | 2.49   | 2        | Bo       | th :   | 1.5         | 2.75  | 1     |  |
| 2.5   | 0              | 0 0         | 111 0011111   | 0211   | . 211 | _    | -     | -       | _      | 1 0/0  | 11001   | Ű     | 2.17   | 2        | 20       |        | - • •       | 2.70  | -     |  |

Bolt

# # Bolt # Shear

Connect Short Long

End

Symmetry Origin End Ecc. Rest. Ratio Ratio Ratio

| 2.5  | Leg6Y<br>0    |   | Leg2<br>0 | 0 | Y-GenXY     | 6Y   | 7Y   | 1 | 4 | 1    | 1   | 1 5/8 A394   | 6 | 2.49 | 2       | Both | 1.5   | 2.75  | 1      |
|------|---------------|---|-----------|---|-------------|------|------|---|---|------|-----|--------------|---|------|---------|------|-------|-------|--------|
|      | Leg7P         |   | Leg3      | O | XY-Symmetry | 7 P  | 8P   | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg7X    | 0 | 0<br>Leg3 |   | X-GenXY     | 7x   | 8X   | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg7XY   | 0 | 0<br>Leg3 |   | XY-GenXY    | 7XY  | 8XY  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg7Y    | 0 | 0<br>Leg3 |   | Y-GenXY     | 7 Y  | 8Y   | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg8P    | 0 | 0<br>Leg3 |   | XY-Symmetry | 8 P  | 10S  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0             | 0 | 0         |   |             |      |      | 1 |   | 1    | 1   |              |   | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | Leg8X<br>0    | 0 | Leg3      |   | X-GenXY     | 8X   | 10X  |   | 4 |      |     | 1 5/8 A394   | 0 |      | -       |      |       |       |        |
| 0    | Leg8XY<br>0   | 0 | Leg3<br>0 |   | XY-GenXY    | 8XY  | 10XY | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | Leg8Y<br>0    | 0 | Leg3<br>0 |   | Y-GenXY     | 84   | 10Y  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | Leg9P<br>0    | 0 | Leg3      |   | XY-Symmetry | 10S  | 118  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| Ü    | Leg9X         |   | Leg3      |   | X-GenXY     | 10X  | 11X  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg9XY   | 0 | 0<br>Leg3 |   | XY-GenXY    | 10XY | 11XY | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg9Y    | 0 | 0<br>Leg3 |   | Y-GenXY     | 10Y  | 11Y  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg10P   | 0 | 0<br>Leg3 |   | XY-Symmetry | 11s  | 12S  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg10X   | 0 | 0<br>Leg3 |   | X-GenXY     | 11X  | 12X  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | 0             | 0 | 0         |   |             |      |      |   |   |      |     |              |   |      |         |      |       |       |        |
| 0    | Leg10XY<br>0  | 0 | Leg3<br>0 |   | XY-GenXY    | 11XY | 12XY | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 0    | Leg10Y<br>0   | 0 | Leg3<br>0 |   | Y-GenXY     | 11Y  | 12Y  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 2.6  | 0       |      | 0     | 0     | 0      |
| 2.75 | Leg11P<br>0   |   | Leg3<br>0 | 0 | XY-Symmetry | 12S  | 13S  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 8 | 3.45 | 1       | Both | 0.875 | 2.125 | 1.3125 |
| 2.75 | Leg11X<br>0   |   | Leg3<br>0 | 0 | X-GenXY     | 12X  | 13X  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 8 | 3.45 | 1       | Both | 0.875 | 2.125 | 1.3125 |
|      | Leg11XY       |   | Leg3      |   | XY-GenXY    | 12XY | 13XY | 1 | 4 | 1    | 1   | 1 5/8 A394   | 8 | 3.45 | 1       | Both | 0.875 | 2.125 | 1.3125 |
| 2.75 | 0<br>Leg11Y   |   | 0<br>Leg3 | 0 | Y-GenXY     | 12Y  | 13Y  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 8 | 3.45 | 1       | Both | 0.875 | 2.125 | 1.3125 |
| 2.75 | 0<br>Leg12P   |   | 0<br>Leg4 | 0 | XY-Symmetry | 13S  | 14S  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 3.95 | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg12X   | 0 | 0<br>Leg4 |   | X-GenXY     | 13X  | 14X  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 3.95 | 0       |      | 0     | 0     | 0      |
| 0    | 0<br>Leg12XY  | 0 | 0<br>Leq4 |   | XY-GenXY    | 13XY | 14XY | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 3.95 | 0       |      | 0     | 0     | 0      |
| 0    | 0             | 0 | 0         |   | Y-GenXY     | 13Y  | 14Y  | 1 | 4 | 1    | 1   | 1 5/8 A394   | 0 | 3.95 | 0       |      | 0     | 0     | 0      |
| 0    | Leg12Y<br>0   | 0 | Leg4<br>0 |   |             |      |      |   |   |      |     |              |   |      |         |      |       |       |        |
| 5    | Leg13P<br>0   | 0 | Leg4<br>0 |   | XY-Symmetry | 14S  | 9P   | 1 | 4 | 0.5  | 0.5 | 0.5 5/8 A394 | 8 | 2.48 | 1       | Both | 1.25  | 2.75  | 1.25   |
| 5    | Leg13X<br>0   | 0 | Leg4<br>0 |   | X-GenXY     | 14X  | 9X   | 1 | 4 | 0.5  | 0.5 | 0.5 5/8 A394 | 8 | 2.48 | 1       | Both | 1.25  | 2.75  | 1.25   |
| 5    | Leg13XY<br>0  | 0 | Leg4<br>0 |   | XY-GenXY    | 14XY | 9XY  | 1 | 4 | 0.5  | 0.5 | 0.5 5/8 A394 | 8 | 2.48 | 1       | Both | 1.25  | 2.75  | 1.25   |
| 5    | Leg13Y<br>0   | 0 | Leg4<br>0 |   | Y-GenXY     | 14Y  | 9Y   | 1 | 4 | 0.5  | 0.5 | 0.5 5/8 A394 | 8 | 2.48 | 1       | Both | 1.25  | 2.75  | 1.25   |
| J    | V<br>XBrace1P |   |           |   | XY-Symmetry | 1P   | 2X   | 2 | 4 | 0.75 | 0.5 | 0.5 5/8 A394 | 1 | 1    | 1 Short | only | 0.75  | 0     | 0.875  |

| 0 0 0 0                          |                  |     |     |   |   |      |      |              |   |      |                   |         |
|----------------------------------|------------------|-----|-----|---|---|------|------|--------------|---|------|-------------------|---------|
| XBracelX XBrace1                 | X-GenXY          | 1X  | 2P  | 2 | 4 | 0.75 | 0.5  | 0.5 5/8 A394 | 1 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace1XY XBrace1                | XY-GenXY         | 1X  | 2 Y | 2 | 4 | 0.75 | 0.5  | 0.5 5/8 A394 | 1 | 1    | 1 Short only 0.75 | 0 0.875 |
| 0 0 0 0 0 XBrace1                | Y-GenXY          | 1P  | 2XY | 2 | 4 | 0.75 | 0.5  | 0.5 5/8 A394 | 1 | 1    | 1 Short only 0.75 | 0 0.875 |
| 0 0 0 0 0 XBrace1                | XY-Symmetry      | 2P  | ЗХ  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.6875 0 0<br>XBrace2X XBrace1   | 0<br>X-GenXY     | 2X  | 3S  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.6875 0 0<br>XBrace2XY XBrace1  | 0<br>XY-GenXY    | 2XY | 3Y  | 2 |   | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.6875 0 0                       | 0                |     |     |   |   |      |      |              | 2 | 1    | -                 |         |
| XBrace2Y XBrace1<br>1.6875 0 0   | Y-GenXY<br>0     | 2 Y | 3XY | 2 |   | 0.75 | 0.5  | 0.5 5/8 A394 |   |      | 1 Short only 0.75 | 0 0.875 |
| XBrace3P XBrace1 1.6875 0 0      | XY-Symmetry<br>O | 2X  | 3XY | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace3X XBrace1 1.6875 0 0      | X-GenXY<br>0     | 2 P | 3Y  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace3XY XBrace1                | XY-GenXY         | 2 Y | 38  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace3Y XBrace1                 | Y-GenXY          | 2XY | 3X  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.6875 0 0<br>XBrace4P XBrace1R  | XY-Symmetry      | 38  | 4X  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.6875 0 0<br>XBrace4X XBrace1R  | 0<br>X-GenXY     | 3X  | 4S  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.6875 0 0<br>XBrace4XY XBrace1R | 0<br>XY-GenXY    | ЗХҮ | 4 Y | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.6875 0 0<br>XBrace4Y XBrace1R  | 0<br>Y-GenXY     | 3 Y | 4XY | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.6875 0 0                       | 0                |     |     |   |   |      | 0.5  |              | 2 | 1    | -                 |         |
| XBrace5P XBrace1R<br>1.6875 0 0  | XY-Symmetry<br>0 | 3X  | 4XY | 2 |   | 0.75 |      | 0.5 5/8 A394 |   |      | 1 Short only 0.75 | 0 0.875 |
| XBrace5X XBrace1R<br>1.6875 0 0  | X-GenXY<br>0     | 3\$ | 4 Y | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace5XY XBrace1R<br>1.6875 0 0 | XY-GenXY<br>0    | 3Y  | 4S  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace5Y XBrace1R                | Y-GenXY<br>0     | 3XY | 4X  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace6P XBrace1R                | XY-Symmetry      | 4S  | 5X  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace6X XBrace1R                | X-GenXY          | 4 X | 5s  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.625 0 0<br>XBrace6XY XBrace1R  | 0<br>XY-GenXY    | 4XY | 5Y  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.625 0 0 XBrace6Y XBrace1R      | 0<br>Y-GenXY     | 4 Y | 5XY | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.625 0 0<br>XBrace7P XBrace1R   | 0<br>XY-Symmetry | 4X  | 5XY | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.625 0 0<br>XBrace7X XBrace1R   | 0 X-GenXY        | 4S  | 5Y  | 2 |   | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| 1.625 0 0                        | 0                |     |     |   |   |      |      |              |   |      | -                 |         |
| XBrace7XY XBrace1R 1.625 0 0     | XY-GenXY         | 4 Y | 5S  | 2 |   | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace7Y XBrace1R<br>1.625 0 0   | Y-GenXY<br>0     | 4XY | 5X  | 2 | 5 | 0.75 | 0.5  | 0.5 5/8 A394 | 2 | 1    | 1 Short only 0.75 | 0 0.875 |
| XBrace8P XBrace2<br>2.625 0 0    | XY-Symmetry<br>O | 58  | 6X  | 2 | 5 | 0.5  | 0.75 | 0.5 5/8 A394 | 3 | 3.44 | 1 Long only 0.875 | 2 0.875 |
| XBrace8X XBrace2<br>2.625 0 0    | X-GenXY          | 5X  | 6S  | 2 | 5 | 0.5  | 0.75 | 0.5 5/8 A394 | 3 | 3.44 | 1 Long only 0.875 | 2 0.875 |
| 2.025                            | •                |     |     |   |   |      |      |              |   |      |                   |         |

| XBrace8XY            | XBrace2        |   | XY-GenXY    | 5XY | 6Y   | 2 | 5 | 0.5   | 0.75  | 0.5   | 5 5/8 | A394 | 3 | 3.44 | 1 | Long  | only | 0.875 | 2    | 0.875 |
|----------------------|----------------|---|-------------|-----|------|---|---|-------|-------|-------|-------|------|---|------|---|-------|------|-------|------|-------|
| 2.625 0<br>XBrace8Y  | 0<br>XBrace2   | 0 | Y-GenXY     | 5 Y | 6XY  | 2 | 5 | 0.5   | 0.75  | 0.5   | 5 5/8 | A394 | 3 | 3.44 |   | Long  | _    |       | 2    | 0.875 |
| 2.625 0              | 0              | 0 |             |     |      |   |   |       |       |       |       |      |   |      |   | _     | _    |       |      |       |
| XBrace9P<br>2.625 0  | XBrace2        | 0 | XY-Symmetry | 5X  | 6XY  | 2 | 5 | 0.5   | 0.75  | 0.5   | 5/8   | A394 | 3 | 3.44 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| XBrace9X<br>2.625 0  | XBrace2        | 0 | X-GenXY     | 5S  | 6Y   | 2 | 5 | 0.5   | 0.75  | 0.5   | 5/8   | A394 | 3 | 3.44 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| XBrace9XY            |                |   | XY-GenXY    | 5Y  | 6S   | 2 | 5 | 0.5   | 0.75  | 0.5   | 5/8   | A394 | 3 | 3.44 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| 2.625 0<br>XBrace9Y  |                | 0 | Y-GenXY     | 5XY | 6X   | 2 | 5 | 0.5   | 0.75  | 0.5   | 5/8   | A394 | 3 | 3.44 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| 2.625 0<br>XBrace10P | 0<br>XBrace2   | 0 | XY-Symmetry | 6S  | 7X   | 2 | 5 | 0.5   | 0.75  | 0.5   | 5 5/8 | A394 | 3 | 2.71 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| 4 0<br>XBrace10X     | 0 0<br>YBrace? |   | X-GenXY     | 6X  | 7P   | 2 | 5 | 0.5   | 0.75  | 0 5   | 5/8   | A394 | 3 | 2.71 |   | Long  | _    |       | 2    | 0.875 |
| 4 0                  | 0 0            |   |             |     |      |   |   |       |       |       |       |      |   |      |   | _     | -    |       |      |       |
| XBrace10XY<br>4 0    | XBrace2        |   | XY-GenXY    | 6XY | 7Y   | 2 | 5 | 0.5   | 0.75  | 0.5   | 5/8   | A394 | 3 | 2.71 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| XBrace10Y<br>4 0     | XBrace2        |   | Y-GenXY     | 6Y  | 7XY  | 2 | 5 | 0.5   | 0.75  | 0.5   | 5/8   | A394 | 3 | 2.71 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| XBrace11P            |                |   | XY-Symmetry | 6X  | 7XY  | 2 | 5 | 0.5   | 0.75  | 0.5   | 5/8   | A394 | 3 | 2.71 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| XBrace11X            | XBrace2        |   | X-GenXY     | 6S  | 7Y   | 2 | 5 | 0.5   | 0.75  | 0.5   | 5/8   | A394 | 3 | 2.71 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| 4 0<br>XBrace11XY    | 0 0<br>XBrace2 |   | XY-GenXY    | 6Y  | 7P   | 2 | 5 | 0.5   | 0.75  | 0.5   | 5 5/8 | A394 | 3 | 2.71 | 1 | Long  | only | 0.875 | 2    | 0.875 |
| 4 0<br>XBrace11Y     | 0 0<br>YBrace? |   | Y-GenXY     | 6XY | 7x   | 2 | 5 | 0.5   | 0.75  | 0 5   | 5/8   | A394 | 3 | 2.71 | 1 | Long  | only | n 875 | 2    | 0.875 |
| 4 0                  | 0 0            |   |             |     |      |   |   |       |       |       |       |      |   |      |   |       |      |       |      |       |
| XBrace12P<br>3.5 0   | XBrace3        | 0 | XY-Symmetry | 7P  | 8X   | 2 | 5 | 0.75  | 0.5   | 0.5   | 5/8   | A394 | 2 | 1    | 1 | Short | only | 1     | 1.25 | 0.875 |
| XBrace12X<br>3.5 0   | XBrace3        | 0 | X-GenXY     | 7 X | 8P   | 2 | 5 | 0.75  | 0.5   | 0.5   | 5/8   | A394 | 2 | 1    | 1 | Short | only | 1     | 1.25 | 0.875 |
| XBrace12XY           | XBrace3        | 0 | XY-GenXY    | 7XY | 84   | 2 | 5 | 0.75  | 0.5   | 0.5   | 5/8   | A394 | 2 | 1    | 1 | Short | only | 1     | 1.25 | 0.875 |
| XBrace12Y            |                |   | Y-GenXY     | 7 Y | 8XY  | 2 | 5 | 0.75  | 0.5   | 0.5   | 5/8   | A394 | 2 | 1    | 1 | Short | only | 1     | 1.25 | 0.875 |
| 3.5 0<br>XBrace13P   | 0<br>XBrace3   | 0 | XY-Symmetry | 7 X | 8XY  | 2 | 5 | 0.75  | 0.5   | 0.5   | 5/8   | A394 | 2 | 1    | 1 | Short | only | 1     | 1.25 | 0.875 |
| 3.5 0<br>XBrace13X   | 0<br>XBrace3   | 0 | X-GenXY     | 7P  | 8Y   | 2 | 5 | 0.75  | 0.5   | 0 =   | 5 5/8 | A394 | 2 | 1    | 1 | Short | only | 1     | 1.25 | 0.875 |
| 3.5 0                | 0              | 0 |             |     |      |   |   |       |       |       |       |      |   |      |   |       | -    |       |      |       |
| XBrace13XY<br>3.5 0  | XBrace3        | 0 | XY-GenXY    | 7 Y | 8P   | 2 | 5 | 0.75  | 0.5   | 0.5   | 5/8   | A394 | 2 | 1    | 1 | Short | only | 1     | 1.25 | 0.875 |
| XBrace13Y<br>3.5 0   | XBrace3        | 0 | Y-GenXY     | 7XY | 8X   | 2 | 5 | 0.75  | 0.5   | 0.5   | 5/8   | A394 | 2 | 1    | 1 | Short | only | 1     | 1.25 | 0.875 |
| XBrace14P            | XBrace4        | 0 | XY-Symmetry | 8X  | 10S  | 2 | 5 | 0.791 | 0.582 | 0.582 | 5/8   | A394 | 2 | 1    | 1 | Short | only | 0.875 | 0    | 0.875 |
| XBrace14X            | XBrace4        |   | X-GenXY     | 8 P | 10X  | 2 | 5 | 0.791 | 0.582 | 0.582 | 5/8   | A394 | 2 | 1    | 1 | Short | only | 0.875 | 0    | 0.875 |
| 2.5 0<br>XBrace14XY  | 0<br>XBrace4   | 0 | XY-GenXY    | 84  | 10XY | 2 | 5 | 0.791 | 0.582 | 0.582 | 2 5/8 | A394 | 2 | 1    | 1 | Short | only | 0.875 | 0    | 0.875 |
| 2.5 0<br>XBrace14Y   | 0<br>XBrace4   | 0 | Y-GenXY     | 8XY | 10Y  | 2 | 5 | 0.791 | 0.582 | 0.582 | 5/8   | A394 | 2 | 1    | 1 | Short | onlv | 0.875 | 0    | 0.875 |
| 2.5 0                | 0              | 0 |             |     |      |   |   |       |       |       |       |      |   |      |   |       | -    |       |      |       |
| XBrace15P<br>2.5 0   | 0              | 0 | XY-Symmetry |     | 10XY | 2 |   |       | 0.582 |       |       |      | 2 | 1    |   | Short | _    |       |      | 0.875 |
| XBrace15X<br>2.5 0   | XBrace4<br>0   | 0 | X-GenXY     | 8 P | 10Y  | 2 | 5 | 0.791 | 0.582 | 0.582 | 2 5/8 | A394 | 2 | 1    | 1 | Short | only | 0.875 | 0    | 0.875 |
| XBrace15XY           | XBrace4        | 0 | XY-GenXY    | 84  | 10S  | 2 | 5 | 0.791 | 0.582 | 0.582 | 5/8   | A394 | 2 | 1    | 1 | Short | only | 0.875 | 0    | 0.875 |
| XBrace15Y            |                | J | Y-GenXY     | 8XY | 10X  | 2 | 5 | 0.791 | 0.582 | 0.582 | 5/8   | A394 | 2 | 1    | 1 | Short | only | 0.875 | 0    | 0.875 |

| 2.5 0                 | 0              | 0                |      |      |   |                              |    |   |                    |         |
|-----------------------|----------------|------------------|------|------|---|------------------------------|----|---|--------------------|---------|
| XBrace16P             |                | XY-Symmetry      | 10XY | 11X  | 2 | 5 0.789 0.578 0.578 5/8 A394 | 2  | 1 | 1 Short only 1     | 0 0.875 |
| 2.125 0<br>XBrace16X  | 0<br>VBrace/   | 0<br>X-GenXY     | 10Y  | 11S  | 2 | 5 0.789 0.578 0.578 5/8 A394 | 2  | 1 | 1 Short only 1     | 0 0.875 |
| 2.125 0               | 0              | 0                | 101  | 115  |   | 3 0.703 0.370 0.370 370 A334 | 2  | 1 | 1 Shore only       | 0 0.075 |
| XBrace16XY<br>2.125 0 | XBrace4<br>0   | XY-GenXY<br>0    | 10S  | 11Y  | 2 | 5 0.789 0.578 0.578 5/8 A394 | 2  | 1 | 1 Short only 1     | 0 0.875 |
| XBrace16Y             | XBrace4        | Y-GenXY          | 10X  | 11XY | 2 | 5 0.789 0.578 0.578 5/8 A394 | 2  | 1 | 1 Short only 1     | 0 0.875 |
| 2.125 0<br>XBrace17P  | 0<br>XBrace4   | 0<br>XY-Symmetry | 10S  | 11X  | 2 | 5 0.789 0.578 0.578 5/8 A394 | 2  | 1 | 1 Short only 1     | 0 0.875 |
| 2.125 0               | 0              | 0                |      |      |   |                              |    |   | -                  |         |
| XBrace17X<br>2.125 0  | XBrace4<br>0   | X-GenXY          | 10X  | 11S  | 2 | 5 0.789 0.578 0.578 5/8 A394 | 2  | 1 | 1 Short only 1     | 0 0.875 |
| XBrace17XY<br>2.125 0 | XBrace4        | XY-GenXY         | 10XY | 11Y  | 2 | 5 0.789 0.578 0.578 5/8 A394 | 2  | 1 | 1 Short only 1     | 0 0.875 |
| XBrace17Y             | O              | Y-GenXY          | 10Y  | 11XY | 2 | 5 0.789 0.578 0.578 5/8 A394 | 2  | 1 | 1 Short only 1     | 0 0.875 |
| 2.125 0<br>XBrace18P  | 0<br>XBrace5   | 0<br>XY-Symmetry | 118  | 12X  | 2 | 4 0.779 0.559 0.559 5/8 A394 | 1  | 1 | 1 Short only 1     | 0 0.875 |
| 0 0                   | 0 0            |                  |      |      |   |                              | -  |   | _                  |         |
| XBrace18X             | XBrace5        | X-GenXY          | 11X  | 12S  | 2 | 4 0.779 0.559 0.559 5/8 A394 | 1  | 1 | 1 Short only 1     | 0 0.875 |
| XBrace18XY            | XBrace5<br>0 0 | XY-GenXY         | 11XY | 12Y  | 2 | 4 0.779 0.559 0.559 5/8 A394 | 1  | 1 | 1 Short only 1     | 0 0.875 |
| XBrace18Y             |                | Y-GenXY          | 11Y  | 12XY | 2 | 4 0.779 0.559 0.559 5/8 A394 | 1  | 1 | 1 Short only 1     | 0 0.875 |
| 0 0<br>XBrace19P      | 0 0<br>XBrace5 | XY-Symmetry      | 11X  | 12XY | 2 | 4 0.779 0.559 0.559 5/8 A394 | 1  | 1 | 1 Short only 1     | 0 0.875 |
| 0 0                   | 0 0            |                  |      |      |   |                              | 1  | 1 | _                  |         |
| XBrace19X<br>0 0      | 0 0            | X-GenXY          | 11S  | 12Y  | 2 | 4 0.779 0.559 0.559 5/8 A394 | 1  | 1 | 1 Short only 1     | 0 0.875 |
| XBrace19XY            | XBrace5<br>0 0 | XY-GenXY         | 11Y  | 128  | 2 | 4 0.779 0.559 0.559 5/8 A394 | 1  | 1 | 1 Short only 1     | 0 0.875 |
| XBrace19Y             | XBrace5        | Y-GenXY          | 11XY | 12X  | 2 | 4 0.779 0.559 0.559 5/8 A394 | 1  | 1 | 1 Short only 1     | 0 0.875 |
| 0 0<br>XBrace20P      | 0 0<br>XBrace6 | XY-Symmetry      | 128  | 13X  | 2 | 4 0.772 0.544 0.544 5/8 A394 | 1  | 1 | 1 Short only 1.375 | 0 0.875 |
| 0 0<br>XBrace20X      | 0 0<br>XBrace6 | X-GenXY          | 12X  | 13S  | 2 | 4 0.772 0.544 0.544 5/8 A394 | 1  | 1 | _                  | 0 0.875 |
| 0 0                   | 0 0            | x-Gelixi         | 121  | 135  | 2 | 4 0.772 0.344 0.344 376 A394 | Τ. | 1 | 1 Short only 1.375 | 0 0.675 |
| XBrace20XY            | XBrace6<br>0 0 | XY-GenXY         | 12XY | 13Y  | 2 | 4 0.772 0.544 0.544 5/8 A394 | 1  | 1 | 1 Short only 1.375 | 0 0.875 |
| XBrace20Y             | XBrace6        | Y-GenXY          | 12Y  | 13XY | 2 | 4 0.772 0.544 0.544 5/8 A394 | 1  | 1 | 1 Short only 1.375 | 0 0.875 |
| 0 0<br>XBrace21P      | 0 0<br>XBrace6 | XY-Symmetry      | 12X  | 13XY | 2 | 4 0.772 0.544 0.544 5/8 A394 | 1  | 1 | 1 Short only 1.375 | 0 0.875 |
| 0 0<br>XBrace21X      | 0 0<br>XBrace6 | X-GenXY          | 12S  | 13Y  | 2 | 4 0.772 0.544 0.544 5/8 A394 | 1  | 1 | 1 Short only 1.375 | 0 0.875 |
| 0 0                   | 0 0            | x-genxi          |      |      |   |                              |    |   | -                  |         |
| XBrace21XY            | XBrace6<br>0 0 | XY-GenXY         | 12Y  | 13S  | 2 | 4 0.772 0.544 0.544 5/8 A394 | 1  | 1 | 1 Short only 1.375 | 0 0.875 |
| XBrace21Y             | XBrace6        | Y-GenXY          | 12XY | 13X  | 2 | 4 0.772 0.544 0.544 5/8 A394 | 1  | 1 | 1 Short only 1.375 | 0 0.875 |
| 0 0<br>XBrace22P      | 0 0<br>XBrace7 | XY-Symmetry      | 13S  | 14X  | 2 | 4 0.771 0.543 0.543 5/8 A394 | 1  | 1 | 1 Short only 1.625 | 0 0.875 |
| 0 0<br>XBrace22X      | 0 0<br>XBrace7 | X-GenXY          | 13X  | 14S  | 2 | 4 0.771 0.543 0.543 5/8 A394 | 1  | 1 | 1 Short only 1.625 | 0 0.875 |
| 0 0                   | 0 0            | x-genxi          |      |      |   |                              |    |   | -                  |         |
| XBrace22XY<br>0 0     | XBrace7<br>0 0 | XY-GenXY         | 13XY | 14Y  | 2 | 4 0.771 0.543 0.543 5/8 A394 | 1  | 1 | 1 Short only 1.625 | 0 0.875 |
| XBrace22Y             | XBrace7        | Y-GenXY          | 13Y  | 14XY | 2 | 4 0.771 0.543 0.543 5/8 A394 | 1  | 1 | 1 Short only 1.625 | 0 0.875 |
| 0 0<br>XBrace23P      | 0 0<br>XBrace7 | XY-Symmetry      | 13X  | 14XY | 2 | 4 0.771 0.543 0.543 5/8 A394 | 1  | 1 | 1 Short only 1.625 | 0 0.875 |
| 0 0                   | 0 0            |                  |      |      |   |                              |    |   | -                  |         |

| 0   | XBrace23X           | XBrace7        |   | X-GenXY     | 13S  | 14Y  | 2 | 4 0. | 771 | 0.543 | 0.543 | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1.625 | 0   | 0.87  | 5  |
|-----|---------------------|----------------|---|-------------|------|------|---|------|-----|-------|-------|-----|------|---|---|---|-------|------|-------|-----|-------|----|
|     | XBrace23XY          | XBrace7        |   | XY-GenXY    | 13Y  | 14S  | 2 | 4 0. | 771 | 0.543 | 0.543 | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1.625 | 0   | 0.87  | 5  |
| 0   | 0<br>XBrace23Y      |                |   | Y-GenXY     | 13XY | 14X  | 2 | 4 0. | 771 | 0.543 | 0.543 | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1.625 | 0   | 0.87  | 5  |
| 0   | 0<br>XBrace24P      | 0 0<br>XBrace8 |   | XY-Symmetry | 14X  | 9P   | 2 | 5 0. | 577 | 0.788 | 0.577 | 5/8 | A394 | 2 | 1 | 1 | Long  | only | 0.875 | 0   | 0.87  | 5  |
| 2.4 | 375 0<br>XBrace24X  | 0<br>XBrace8   | 0 | X-GenXY     | 14S  | 9X   | 2 | 5 0. | 577 | 0.788 | 0.577 | 5/8 | A394 | 2 | 1 | 1 | Long  | only | 0.875 | 0   | 0.87  | 15 |
| 2.4 |                     | 0              | 0 | XY-GenXY    | 14Y  | 9XY  | 2 |      |     |       | 0.577 |     |      | 2 | 1 |   | _     | only |       |     | 0.87  |    |
|     | 375 0<br>XBrace24Y  | 0              | 0 |             | 14XY | 9Y   | 2 |      |     |       | 0.577 |     |      | 2 | 1 |   | _     | only |       |     | 0.87  |    |
| 2.4 | 375 0               | 0              | 0 | Y-GenXY     |      |      |   |      |     |       |       |     |      |   |   |   | _     | _    |       |     |       |    |
| 2.4 | XBrace25P<br>375 0  | XBrace8        | 0 | XY-Symmetry | 14XY | 9X   | 2 | 5 0. | 577 | 0.788 | 0.577 | 5/8 | A394 | 2 | 1 | 1 | Long  | only | 0.875 | 0   | 0.87  |    |
| 2.4 | XBrace25X<br>375 0  | XBrace8        | 0 | X-GenXY     | 14Y  | 9P   | 2 | 5 0. | 577 | 0.788 | 0.577 | 5/8 | A394 | 2 | 1 | 1 | Long  | only | 0.875 | 0   | 0.87  | 5  |
| 2.4 | XBrace25XY<br>375 0 | XBrace8        | 0 | XY-GenXY    | 14S  | 9Y   | 2 | 5 0. | 577 | 0.788 | 0.577 | 5/8 | A394 | 2 | 1 | 1 | Long  | only | 0.875 | 0   | 0.87  | 5  |
|     | XBrace25Y           | XBrace8        | 0 | Y-GenXY     | 14X  | 9XY  | 2 | 5 0. | 577 | 0.788 | 0.577 | 5/8 | A394 | 2 | 1 | 1 | Long  | only | 0.875 | 0   | 0.87  | 5  |
| 2.4 | Horz1P              | 0<br>Horz1     | U | X-Symmetry  | 2X   | 2XY  | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1     | 0   | 0.87  | 5  |
| 0   | 0<br>Horz1X         | 0 0<br>Horz1   |   | X-Gen       | 2P   | 2Y   | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1     | 0   | 0.87  | 5  |
| 0   | 0<br>Horz2P         | 0 0<br>Horz1   |   | X-Symmetry  | 5X   | 5XY  | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1     | 0   | 0.87  | '5 |
| 0   | 0<br>Horz2X         | 0 0<br>Horz1   |   | X-Gen       | 5S   | 5Y   | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1     | 0   | 0.87  | 15 |
| 0   | 0<br>Horz3P         | 0 0<br>Horz3   |   |             | 7X   | 7XY  | 3 | 4    | 1   | 1     |       |     | A394 | 1 | 1 |   |       | _    | 1     |     | 0.87  |    |
| 0   | 0                   | 0 0            |   | X-Symmetry  |      |      |   |      |     |       |       |     |      | _ |   |   |       | only |       |     |       |    |
| 0   | Horz3X<br>0         | Horz3          |   | X-Gen       | 7P   | 7Y   | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | 3hort | only | 1     | 0   | 0.87  | 5  |
| 0   | Horz4P<br>O         | Horz1          |   | X-Symmetry  | 8 X  | 8XY  | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | Short | only | 0.75  | 0 : | 2.187 | 5  |
| 0   | Horz4X<br>O         | Horz1          |   | X-Gen       | 8 P  | 84   | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | Short | only | 0.75  | 0 : | 2.187 | 5  |
| 0   | Horz5P              | Horz1          |   | Y-Symmetry  | 8 P  | 8X   | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | Short | only | 0.875 | 0   | 0.87  | 5  |
| Ü   | Horz5Y              | Horz1          |   | Y-Gen       | 84   | 8XY  | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 1 | 1 | Short | only | 0.875 | 0   | 0.87  | 5  |
| 0   | 0<br>Horz6P         | 0 0<br>Horz2   |   | Y-Symmetry  | 14S  | 14X  | 3 | 4    | 1   | 0.5   | 0.5   | 5/8 | A394 | 1 | 1 | 1 | Short | only | 0.875 | 0   | 0.87  | 5  |
| 0   | 0<br>Horz6Y         | 0 0<br>Horz2   |   | Y-Gen       | 14Y  | 14XY | 3 | 4    | 1   | 0.5   | 0.5   | 5/8 | A394 | 1 | 1 | 1 | Short | only | 0.875 | 0   | 0.87  | 5  |
| 0   | 0<br>Horz7P         | 0 0<br>Horz2   |   | X-Symmetry  | 14X  | 14XY | 3 | 4    | 1   | 0.5   | 0.5   | 5/8 | A394 | 1 | 1 | 1 | Short | only | 0.875 | 0   | 0.87  | '5 |
| 0   | 0<br>Horz7X         | 0 0<br>Horz2   |   | X-Gen       | 14S  | 14Y  | 3 | 4    | 1   | 0.5   | 0.5   | 5/8 | A394 | 1 | 1 |   |       | only |       | 0   | 0.87  | 15 |
| 0   | 0<br>Arm1P          | 0 0<br>Arm1    |   |             | 15P  | 1P   | 3 | 4    | 1   | 1     |       |     | A394 | 1 | 4 |   |       | only |       | 0   |       | 0  |
| 0   | 0                   | 0 0            |   | X-Symmetry  |      |      |   |      |     |       |       |     |      |   |   |   |       | -    |       |     |       |    |
| 0   | Arm1X<br>O          | Arm1<br>0 0    |   | X-Gen       | 15X  | 1X   | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 4 | 1 | 3hort | only | 0.875 | 0   |       | 0  |
| 0   | Arm2P<br>O          | Arm1<br>0 0    |   | None        | 1P   | 1X   | 3 | 4    | 1   | 1     | 1     | 5/8 | A394 | 1 | 4 | 1 | 3hort | only | 0.875 | 0   |       | 0  |
| 0   | Arm3P<br>O          | Arm2<br>0 0    |   | XY-Symmetry | 16P  | 2P   | 3 | 5    | 1   | 0.5   | 0.5   | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1.25  | 0   | 2.37  | 5  |
| 5   | Arm3X               | Arm2           |   | X-GenXY     | 16X  | 2X   | 3 | 5    | 1   | 0.5   | 0.5   | 5/8 | A394 | 1 | 1 | 1 | Short | only | 1.25  | 0   | 2.37  | 5  |

| 0            | 0             | 0 0          |               |     |         |   |   |   |     |              |   |      |                             |
|--------------|---------------|--------------|---------------|-----|---------|---|---|---|-----|--------------|---|------|-----------------------------|
|              | Arm3XY        | Arm2         | XY-GenXY      | 16X | 2XY     | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 1 | 1    | 1 Short only 1.25 0 2.375   |
| 0            | 0<br>Arm3Y    | 0 0<br>Arm2  | Y-GenXY       | 16P | 2 Y     | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 1 | 1    | 1 Short only 1.25 0 2.375   |
| 0            | 0<br>Arm4P    | 0 0<br>Arm2  | Y-Symmetry    | 2 P | 2X      | 3 | 5 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Short only 1.25 0 2.375   |
| 0            | 0<br>Arm4Y    | 0 0<br>Arm2  | Y-Gen         | 2 Y | 2XY     | 3 | 5 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Short only 1.25 0 2.375   |
| 0            | 0<br>Arm5P    | 0 0<br>Arm3  | XY-Symmetry   | 17P | 5s      | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 2 | 1.65 | 1 Long only 0.875 2.5 2.375 |
| 2.5          | 0<br>Arm5X    |              | 0 X-GenXY     | 17X | 5x      | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 2 | 1.65 | 1 Long only 0.875 2.5 2.375 |
| 2.5          | 0<br>Arm5XY   |              | 0 XY-GenXY    | 17X | 5XY     | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 2 | 1.65 | 1 Long only 0.875 2.5 2.375 |
| 2.5          | 0             | 0            | 0             | 17P |         |   |   | 1 |     |              |   |      | -                           |
| 2.5          | Arm5Y<br>O    |              | Y-GenXY       |     | 5Y<br>- | 3 | 5 |   | 0.5 | 0.5 5/8 A394 | 2 | 1.65 | 1 Long only 0.875 2.5 2.375 |
| 2.5          | Arm6P<br>O    |              | Y-Symmetry    | 58  | 5X      | 3 | 5 | 1 | 1   | 1 5/8 A394   | 2 | 1.65 | 1 Long only 0.875 2.5 2.375 |
| 2.5          | Arm6Y<br>O    | Arm3<br>O    | Y-Gen         | 5Y  | 5XY     | 3 | 5 | 1 | 1   | 1 5/8 A394   | 2 | 1.65 | 1 Long only 0.875 2.5 2.375 |
| 6            | Arm7P<br>O    | Arm2<br>0 0  | XY-Symmetry   | 18P | 7P      | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 2 | 1    | 1 Short only 1.375 0 2.1875 |
| 6            | Arm7X         | Arm2<br>0 0  | X-GenXY       | 18X | 7X      | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 2 | 1    | 1 Short only 1.375 0 2.1875 |
| 6            | Arm7XY<br>0   | Arm2<br>0 0  | XY-GenXY      | 18X | 7XY     | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 2 | 1    | 1 Short only 1.375 0 2.1875 |
|              | Arm7Y         | Arm2         | Y-GenXY       | 18P | 7 Y     | 3 | 5 | 1 | 0.5 | 0.5 5/8 A394 | 2 | 1    | 1 Short only 1.375 0 2.1875 |
| 6            | 0<br>Arm8P    | 0 0<br>Arm2  | Y-Symmetry    | 7 P | 7X      | 3 | 5 | 1 | 1   | 1 5/8 A394   | 2 | 1    | 1 Short only 1.375 0 2.1875 |
| 6            | 0<br>Arm8Y    | 0 0<br>Arm2  | Y-Gen         | 7 Y | 7XY     | 3 | 5 | 1 | 1   | 1 5/8 A394   | 2 | 1    | 1 Short only 1.375 0 2.1875 |
| 6<br>Dia     | 0<br>gonal 1P | 0 0<br>Diag1 | XY-Symmetry   | 15P | 2P      | 2 | 4 | 1 | 0.5 | 0.5 5/8 A394 | 3 | 1.55 | 1 Long only 1 2.25 0.875    |
| 2.75<br>Dia  | 0<br>gonal 1X | 0<br>Diag1   | 0<br>X-GenXY  | 15X | 2X      | 2 | 4 | 1 | 0.5 | 0.5 5/8 A394 | 3 | 1.55 | 1 Long only 1 2.25 0.875    |
| 2.75<br>Diag | 0<br>onal 1XY | 0<br>Diag1   | 0<br>XY-GenXY | 15X | 2XY     | 2 | 4 | 1 | 0.5 | 0.5 5/8 A394 | 3 | 1.55 | 1 Long only 1 2.25 0.875    |
| 2.75         | 0<br>gonal 1Y | 0<br>Diag1   | 0<br>Y-GenXY  | 15P | 2Y      | 2 | 4 | 1 | 0.5 | 0.5 5/8 A394 | 3 | 1.55 | 1 Long only 1 2.25 0.875    |
| 2.75         | 0             | 0            | 0             | 16P | 1P      | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
| 0            | gonal 2P      | Diag2        | X-Symmetry    |     |         |   |   |   |     |              |   |      | <u>.</u>                    |
| 0            | gonal 2X<br>0 | Diag2        | X-Gen         | 16X | 1X      | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
| Dia<br>O     | gonal 3P<br>0 | Diag2<br>0 0 | XY-Symmetry   | 18P | 6S      | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
| Dia<br>O     | gonal 3X<br>0 | Diag2<br>0 0 | X-GenXY       | 18X | 6X      | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
| Diag<br>O    | onal 3XY      | Diag2<br>0 0 | XY-GenXY      | 18X | 6XY     | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
|              | gonal 3Y      | Diag2        | Y-GenXY       | 18P | 6Y      | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
| Dia          | gonal 4P      | Diag3        | Y-Symmetry    | 6S  | 6X      | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
|              | 0<br>gonal 4Y | 0 0<br>Diag3 | Y-Gen         | 6Y  | 6XY     | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
|              | 0<br>gonal 5P | 0 0<br>Diag2 | XY-Symmetry   | 17P | 19X     | 2 | 4 | 1 | 1   | 1 5/8 A394   | 1 | 1    | 1 Long only 1 0 1           |
| 0            | 0             | 0 0          |               |     |         |   |   |   |     |              |   |      |                             |

| Diagonal 5X         | Diag2         | X-GenXY     | 17X  | 19P  | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
|---------------------|---------------|-------------|------|------|---|---|------|------|------------------|----|----|----|------------|------|---|-------|
| 0 0                 | 0 0           | A Genai     | 1/1  | 1 71 | 2 | 7 | 1    | _    | 1 3/0 A334       | Τ. | _  | 1  | Hong only  | _    | O | Τ.    |
| Diagonal 5XY        | Diag2         | XY-GenXY    | 17X  | 19Y  | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0<br>Diagonal 5Y  | 0 0<br>Diag2  | Y-GenXY     | 17P  | 19XY | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0                 | 0 0           |             |      |      |   |   |      |      |                  |    |    |    | - 5 - 4    |      |   |       |
| Diagonal 6P         | Diag3         | Y-Symmetry  | 4 S  | 4X   | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0<br>Diagonal 6Y  | 0 0<br>Diag3  | Y-Gen       | 4 Y  | 4XY  | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0                 | 0 0           |             |      |      | _ |   |      |      |                  | _  | _  | _  |            | _    | - | _     |
| g60P                | Inner1        | X-Symmetry  | 2 P  | 2XY  | 3 | 4 | 0.75 | 0.5  | 0.5 5/8 A394     | 1  | 1  | 1  | Short only | 0.75 | 0 | 0.875 |
| 0 0<br>q60X         | 0 0<br>Inner1 | X-Gen       | 2X   | 2Y   | 3 | 4 | 0.75 | 0.5  | 0.5 5/8 A394     | 1  | 1  | 1  | Short only | 0.75 | 0 | 0.875 |
| 0 0                 | 0 0           | A GCII      | 221  | 21   | 5 | - | 0.75 | 0.5  | 0.5 5/0 11554    | _  | _  | _  | SHOLE OHLY | 0.75 | 0 | 0.075 |
| g61P                | Inner1        | X-Symmetry  | 5S   | 5XY  | 3 | 4 | 0.75 | 0.5  | 0.5 5/8 A394     | 1  | 1  | 1  | Short only | 0.75 | 0 | 0.875 |
| 0 0<br>q61X         | 0 0<br>Inner1 | X-Gen       | 5x   | 5Y   | 3 | 1 | 0.75 | 0.5  | 0.5 5/8 A394     | 1  | 1  | 1  | Short only | 0.75 | 0 | 0.875 |
| 0 0                 | 0 0           | x-gen       | JA   | 31   | 3 | 4 | 0.75 | 0.5  | 0.5 5/6 A594     | Τ. | Τ  | Τ. | SHOLE OHLY | 0.75 | U | 0.075 |
| g62P                | Inner1        | X-Symmetry  | 7 P  | 7XY  | 3 | 4 | 0.75 | 0.5  | 0.5 5/8 A394     | 1  | 1  | 1  | Short only | 0.75 | 0 | 0.875 |
| 0 0                 | 0 0           | V. G.       | 717  | 717  | 2 | 4 | 0 75 | 0 5  | 0 5 5 /0 3 2 0 4 | 1  | 1  | -  | Q11        | 0 75 | 0 | 0 075 |
| g62X<br>0 0         | Inner1<br>0 0 | X-Gen       | 7 X  | 7Y   | 3 | 4 | 0.75 | 0.5  | 0.5 5/8 A394     | 1  | 1  | 1  | Short only | 0.75 | U | 0.875 |
| g63P                | Inner1        | X-Symmetry  | 8 P  | 8XY  | 3 | 4 | 0.75 | 0.5  | 0.5 5/8 A394     | 1  | 1  | 1  | Short only | 0.75 | 0 | 0.875 |
| 0 0                 | 0 0           |             | 0    | 0    |   |   |      |      | 0 = = /0 = 004   |    |    |    |            |      |   |       |
| g63X<br>0 0         | Inner1        | X-Gen       | 8 X  | 84   | 3 | 4 | 0.75 | 0.5  | 0.5 5/8 A394     | 1  | 1  | 1  | Short only | 0.75 | 0 | 0.875 |
| g64P                | Inner2        | X-Symmetry  | 14S  | 14XY | 3 | 4 | 0.5  | 0.75 | 0.5 5/8 A394     | 1  | 1  | 1  | Long only  | 1    | 0 | 0.875 |
| 0 0                 | 0 0           |             |      |      |   |   |      |      |                  |    |    |    |            |      |   |       |
| g64X<br>0 0         | Inner2<br>0 0 | X-Gen       | 14X  | 14Y  | 3 | 4 | 0.5  | 0.75 | 0.5 5/8 A394     | 1  | 1  | 1  | Long only  | 1    | 0 | 0.875 |
| Diagonal 7P         | Diag2         | XY-Symmetry | 19X  | 4S   | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0                 | 0 0           | 1 1         |      |      |   |   |      |      |                  |    |    |    | J 1        |      |   |       |
| Diagonal 7X         | Diag2         | X-GenXY     | 19P  | 4X   | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0<br>Diagonal 7XY | 0 0<br>Diag2  | XY-GenXY    | 19Y  | 4XY  | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0                 | 0 0           | MI Genmi    | 171  | 1111 | - | - | _    | _    | 1 0/0 11091      | _  | -  | _  | Hong only  | _    | Ü | _     |
| Diagonal 7Y         | Diag2         | Y-GenXY     | 19XY | 4 Y  | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0<br>Diagonal 8P  | 0 0<br>Diag2  | XY-Symmetry | 19X  | 5s   | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0                 | 0 0           | AI Symmetry | IJA  | 55   | ۷ | 7 | _    |      | 1 3/0 A334       | Τ. | Τ. |    | Hong only  | Τ.   | O | Τ.    |
| Diagonal 8X         | Diag2         | X-GenXY     | 19P  | 5X   | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0                 | 0 0           | VV_C^~VV    | 19Y  | 5XY  | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Iong only  | 1    | 0 | 1     |
| Diagonal 8XY        | Diag2<br>0 0  | XY-GenXY    | 191  | JVI  | ∠ | 4 | Τ.   | Τ    | 1 J/O AJ94       | Τ  | 1  | Τ  | Long only  | 1    | U | 1     |
| Diagonal 8Y         | Diag2         | Y-GenXY     | 19XY | 5Y   | 2 | 4 | 1    | 1    | 1 5/8 A394       | 1  | 1  | 1  | Long only  | 1    | 0 | 1     |
| 0 0                 | 0 0           |             |      |      |   |   |      |      |                  |    |    |    |            |      |   |       |

### Member Capacities and Overrides:

Design Tension L/r Length Member Group Design Comp. L/r Connection Connection Net Rupture RTE End RTE Edge Override Override Override Override Override Warnings Label Label Comp. Control Tension Control Comp. Shear Bearing Section Tension Dist. Dist. Comp. Comp. Tension Tension Face Comp. or Errors Capacity Criterion Capacity Criterion Capacity Capacity Tension Capacity Tension Tension Capacity Capacity Control Capacity Control Member Capacity Capacity Capacity Unsup. Criterion Criterion ship

| (kips)          |                    | (kips)<br>(kips)                    | (kips)                                        |            |          | (ft)         | (kips)    | (kips)                   | (kips)                | (kips)              | (kips)             | (kips)             | (kips)          | (kips)              |
|-----------------|--------------------|-------------------------------------|-----------------------------------------------|------------|----------|--------------|-----------|--------------------------|-----------------------|---------------------|--------------------|--------------------|-----------------|---------------------|
|                 |                    |                                     |                                               |            |          |              |           |                          |                       |                     |                    |                    |                 |                     |
| 0.000           | Leg1P              | Leg1 10.122<br>0.000                | L/r 16.406<br>Automatic                       | Rupture    | 151      | 5.39         | 10.122    | 18.200                   | 21.094                | 17.444              | 16.406             | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg1X              | Leg1 10.122<br>0.000                | L/r 16.406 Automatic                          | Rupture    | 151      | 5.39         | 10.122    | 18.200                   | 21.094                | 17.444              | 16.406             | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg1XY             | Leg1 10.122<br>0.000                | L/r 16.406<br>Automatic                       | Rupture    | 151      | 5.39         | 10.122    | 18.200                   | 21.094                | 17.444              | 16.406             | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg1Y              | Leg1 10.122<br>0.000                | L/r 16.406<br>Automatic                       | Rupture    | 151      | 5.39         | 10.122    | 18.200                   | 21.094                | 17.444              | 16.406             | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg2P              | Leg2 72.764<br>0.000                | Automatic                                     | Net Sect   | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg2X              | Leg2 72.764<br>0.000                | Automatic                                     | Net Sect   | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg2XY             | Leg2 72.764<br>0.000                | Automatic                                     | Net Sect   | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg2Y              | Leg2 72.764<br>0.000                | L/r 61.475 Automatic L/r 61.475               | Net Sect   | 53<br>53 | 3.50<br>3.50 | 72.764    | 0.000                    | 0.000                 | 61.475<br>61.475    | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg3P<br>Leg3X     | Leg2 72.764<br>0.000<br>Leg2 72.764 | Automatic<br>L/r 61.475                       |            | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg3XY             | 0.000<br>Leg2 72.764                | Automatic<br>L/r 61.475                       |            | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg3Y              | 0.000<br>Leg2 72.764                | Automatic<br>L/r 61.475                       |            | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg4P              | 0.000<br>Leg2 72.764                |                                               | Net Sect   | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg4X              | 0.000<br>Leg2 72.764                |                                               | Net Sect   | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg4XY             | 0.000<br>Leg2 72.764                |                                               | Net Sect   | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg4Y              | 0.000<br>Leg2 72.764<br>0.000       | Automatic<br>L/r 61.475<br>Automatic          | Net Sect   | 53       | 3.50         | 72.764    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg5P              | Leg2 69.710                         | L/r 61.475 Automatic                          | Net Sect   | 64       | 4.25         | 69.710    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg5X              | Leg2 69.710                         | L/r 61.475 Automatic                          | Net Sect   | 64       | 4.25         | 69.710    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg5XY             | Leg2 69.710<br>0.000                | L/r 61.475<br>Automatic                       | Net Sect   | 64       | 4.25         | 69.710    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg5Y              | Leg2 69.710<br>0.000                | L/r 61.475<br>Automatic                       |            | 64       | 4.25         | 69.710    | 0.000                    | 0.000                 | 61.475              | 0.000              | 0.000              | 0.000           | 0.000               |
| 0.000           | Leg6P              | Leg2 69.710<br>0.000                | L/r 61.546<br>Automatic                       | Member "L  |          |              |           | 109.200<br>cked for bloc | 105.469<br>ck shear s | 61.546<br>ince more | 93.750<br>than one | 0.000<br>gage line | 0.000<br>exists | 0.000<br>(long edge |
|                 | ce (g) g:<br>Leg6X | Leg2 69.710                         | however, end, edge<br>L/r 61.546              | Net Sect   | 64       | 4.25         | 69.710    | 109.200                  | 105.469               | 61.546              | 93.750             | 0.000              | 0.000           | 0.000               |
| 0.000<br>distan |                    |                                     | Automatic however, end, edge                  | and spaci  | ng di    | stances      | will be   | cked for blochecked. ??  |                       |                     |                    |                    |                 |                     |
| 0.000           | Leg6XY             | Leg2 69.710<br>0.000                |                                               | Member "Le | g6XY"    | will n       | ot be che | cked for bloc            | ck shear s            | 61.546 ince more    |                    | 0.000<br>gage line | 0.000<br>exists | 0.000<br>(long edge |
|                 | ce (g) g<br>Leg6Y  | Leg2 69.710                         | however, end, edge L/r 61.546                 | Net Sect   | 64       | 4.25         | 69.710    | 109.200                  | 105.469               |                     | 93.750             | 0.000              | 0.000           | 0.000               |
| 0.000<br>distan |                    |                                     | Automatic<br>however, end, edge<br>L/r 83.423 | and spaci  | ng di    | stances      | will be   |                          |                       |                     |                    |                    |                 |                     |
| 0.000           | Leg7P              | Leg3 95.941<br>0.000                | L/r 83.423<br>Automatic                       | Net Sect   | CO       | 4.25         | 93.941    | 0.000                    | 0.000                 | 83.423              | 0.000              | 0.000              | 0.000           | 0.000               |

| T 737                                                                                                                                                                                                                                                                                                 | T = == 2 OF O/1                                                                                                                                                                                                                                                                                                                                                                                                                        | T / 02 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nat Cast                                                                                                                                                                                                                                               | CE                                                                                                               | 4 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05 041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 000                                                                                                       | 02 422                                                                                                                | 0 000                                                                                                                | 0 000                                                                                             | 0 000                                                                              | 0.000                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Leg7X<br>0.000                                                                                                                                                                                                                                                                                        | Leg3 95.941<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | L/r 83.423<br>Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 65                                                                                                               | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg7XY                                                                                                                                                                                                                                                                                                | Leg3 95.941<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | L/r 83.423<br>Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 65                                                                                                               | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg7Y                                                                                                                                                                                                                                                                                                 | Leg3 95.941                                                                                                                                                                                                                                                                                                                                                                                                                            | L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Sect                                                                                                                                                                                                                                               | 65                                                                                                               | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                  | Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Made Caral                                                                                                                                                                                                                                             | 0.4                                                                                                              | 6 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 000                                                                                                       | 02 402                                                                                                                | 0 000                                                                                                                | 0 000                                                                                             | 0 000                                                                              | 0 000                                                                      |
| Leg8P<br>0.000                                                                                                                                                                                                                                                                                        | Leg3 81.387<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | L/r 83.423<br>Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 94                                                                                                               | 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg8X                                                                                                                                                                                                                                                                                                 | Leg3 81.387                                                                                                                                                                                                                                                                                                                                                                                                                            | L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Sect                                                                                                                                                                                                                                               | 94                                                                                                               | 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                  | Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nat Cast                                                                                                                                                                                                                                               | 94                                                                                                               | 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg8XY<br>0.000                                                                                                                                                                                                                                                                                       | Leg3 81.387<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | L/r 83.423<br>Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 94                                                                                                               | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 03.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg8Y                                                                                                                                                                                                                                                                                                 | Leg3 81.387                                                                                                                                                                                                                                                                                                                                                                                                                            | L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Sect                                                                                                                                                                                                                                               | 94                                                                                                               | 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000<br>Leg9P                                                                                                                                                                                                                                                                                        | 0.000<br>Leg3 76.554                                                                                                                                                                                                                                                                                                                                                                                                                   | Automatic<br>L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 102                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                  | Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Net beet                                                                                                                                                                                                                                               | 102                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 03.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg9X                                                                                                                                                                                                                                                                                                 | Leg3 76.554                                                                                                                                                                                                                                                                                                                                                                                                                            | L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Sect                                                                                                                                                                                                                                               | 102                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000<br>Leq9XY                                                                                                                                                                                                                                                                                       | 0.000<br>Leg3 76.554                                                                                                                                                                                                                                                                                                                                                                                                                   | Automatic<br>L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 102                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                  | Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                       |                                                                                                                      |                                                                                                   |                                                                                    |                                                                            |
| Leg9Y<br>0.000                                                                                                                                                                                                                                                                                        | Leg3 76.554<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | L/r 83.423<br>Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 102                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg10P                                                                                                                                                                                                                                                                                                | Leg3 76.554                                                                                                                                                                                                                                                                                                                                                                                                                            | L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Sect                                                                                                                                                                                                                                               | 102                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                  | Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mark Carri                                                                                                                                                                                                                                             | 100                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 000                                                                                                       | 02 402                                                                                                                | 0 000                                                                                                                | 0.000                                                                                             | 0 000                                                                              | 0.000                                                                      |
| Leg10X<br>0.000                                                                                                                                                                                                                                                                                       | Leg3 76.554<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | L/r 83.423<br>Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 102                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg10XY                                                                                                                                                                                                                                                                                               | Leg3 76.554                                                                                                                                                                                                                                                                                                                                                                                                                            | L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Sect                                                                                                                                                                                                                                               | 102                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000<br>Leg10Y                                                                                                                                                                                                                                                                                       | 0.000<br>Leg3 76.554                                                                                                                                                                                                                                                                                                                                                                                                                   | Automatic<br>L/r 83.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Sect                                                                                                                                                                                                                                               | 102                                                                                                              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 83.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                  | Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Net bect                                                                                                                                                                                                                                               | 102                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                       | 03.423                                                                                                                | 0.000                                                                                                                | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| 0.000                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                  | Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                       |                                                                                                                      |                                                                                                   |                                                                                    |                                                                            |
| Leg11P                                                                                                                                                                                                                                                                                                | Leg3 72.800                                                                                                                                                                                                                                                                                                                                                                                                                            | Shear 72.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shear                                                                                                                                                                                                                                                  |                                                                                                                  | 6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 196.875                                                                                                     | 74.986                                                                                                                |                                                                                                                      | 0.000                                                                                             | 0.000                                                                              | 0.000                                                                      |
| Leg11P<br>0.000                                                                                                                                                                                                                                                                                       | Leg3 72.800<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | Shear 72.800<br>Automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Member "Le                                                                                                                                                                                                                                             | g11P"                                                                                                            | will no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ot be chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ked for bloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                       |                                                                                                                      |                                                                                                   |                                                                                    |                                                                            |
| Leg11P<br>0.000                                                                                                                                                                                                                                                                                       | Leg3 72.800<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | Shear 72.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Member "Le<br>and spaci                                                                                                                                                                                                                                | g11P"<br>ng dis                                                                                                  | will no<br>stances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ot be chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ked for bloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                       | than one                                                                                                             |                                                                                                   |                                                                                    |                                                                            |
| Leg11P<br>0.000<br>distance (g) gr<br>Leg11X<br>0.000                                                                                                                                                                                                                                                 | Leg3 72.800<br>0.000<br>eater than zero);<br>Leg3 72.800<br>0.000                                                                                                                                                                                                                                                                                                                                                                      | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic                                                                                                                                                                                                                                                                                                                                                                                                                           | Member "Le<br>and spaci<br>Shear<br>Member "Le                                                                                                                                                                                                         | g11P"<br>ng dis<br>97<br>g11X"                                                                                   | will no<br>stances<br>6.33<br>will no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ot be chec<br>will be o<br>79.787<br>ot be chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ked for bloc<br>hecked. ??<br>72.800<br>ked for bloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k shear s<br>196.875                                                                                        | 74.986                                                                                                                | than one 180.147                                                                                                     | gage line 0.000                                                                                   | <pre>exists 0.000</pre>                                                            | (long edge 0.000                                                           |
| Leg11P<br>0.000<br>distance (g) gr<br>Leg11X<br>0.000<br>distance (g) gr                                                                                                                                                                                                                              | Leg3 72.800<br>0.000<br>eater than zero);<br>Leg3 72.800<br>0.000<br>eater than zero);                                                                                                                                                                                                                                                                                                                                                 | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge                                                                                                                                                                                                                                                                                                                                                                                                        | Member "Le<br>and spaci<br>Shear<br>Member "Le<br>and spaci                                                                                                                                                                                            | g11P"<br>ng dis<br>97<br>g11X"<br>ng dis                                                                         | will no<br>stances<br>6.33<br>will no<br>stances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | will be check 79.787 of be check will be c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ked for bloc<br>hecked. ??<br>72.800<br>ked for bloc<br>hecked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k shear s<br>196.875<br>k shear s                                                                           | 74.986<br>since more                                                                                                  | than one<br>180.147<br>than one                                                                                      | gage line<br>0.000<br>gage line                                                                   | 0.000<br>exists                                                                    | 0.000<br>(long edge                                                        |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY                                                                                                                                                                                                                                     | Leg3 72.800<br>0.000<br>eater than zero);<br>Leg3 72.800<br>0.000<br>eater than zero);<br>Leg3 72.800                                                                                                                                                                                                                                                                                                                                  | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800                                                                                                                                                                                                                                                                                                                                                                                           | Member "Le<br>and spaci<br>Shear<br>Member "Le<br>and spaci<br>Shear                                                                                                                                                                                   | g11P"<br>ng dis<br>97<br>g11X"<br>ng dis<br>97                                                                   | will no<br>stances<br>6.33<br>will no<br>stances<br>6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | will be on the control of the check will be on the control of the  | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k shear s<br>196.875<br>k shear s<br>196.875                                                                | 74.986 since more 74.986                                                                                              | than one<br>180.147<br>than one<br>180.147                                                                           | gage line 0.000 gage line 0.000                                                                   | exists 0.000 exists 0.000                                                          | 0.000<br>(long edge<br>0.000                                               |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000                                                                                                                                                                                                                               | Leg3 72.800<br>0.000<br>eater than zero);<br>Leg3 72.800<br>0.000<br>eater than zero);<br>Leg3 72.800<br>0.000                                                                                                                                                                                                                                                                                                                         | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic M                                                                                                                                                                                                                                                                                                                                                                               | Member "Le<br>and spaci<br>Shear<br>Member "Le<br>and spaci<br>Shear<br>Member "Leg                                                                                                                                                                    | g11P"<br>ng dis<br>97<br>g11X"<br>ng dis<br>97<br>f11XY"                                                         | will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | will be one of will be of the check will be of the check to the check the ch | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked for blocked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k shear s<br>196.875<br>k shear s<br>196.875                                                                | 74.986 since more 74.986                                                                                              | than one<br>180.147<br>than one<br>180.147                                                                           | gage line 0.000 gage line 0.000                                                                   | exists 0.000 exists 0.000                                                          | (long edge<br>0.000<br>(long edge<br>0.000                                 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000                                                                                                                                                                                                                               | Leg3 72.800<br>0.000<br>eater than zero);<br>Leg3 72.800<br>0.000<br>eater than zero);<br>Leg3 72.800<br>0.000                                                                                                                                                                                                                                                                                                                         | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800                                                                                                                                                                                                                                                                                                                                                                                           | Member "Le<br>and spaci<br>Shear<br>Member "Le<br>and spaci<br>Shear<br>Member "Leg<br>and spaci                                                                                                                                                       | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis                                                                    | will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no<br>stances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | will be one of will be of the check will be of the check to the check the ch | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked for blocked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 196.875<br>k shear s<br>196.875<br>k shear s                                                                | 74.986 since more 74.986                                                                                              | than one<br>180.147<br>than one<br>180.147<br>than one                                                               | gage line 0.000 gage line 0.000                                                                   | exists 0.000 exists 0.000                                                          | (long edge<br>0.000<br>(long edge<br>0.000                                 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000                                                                                                                                                                                                  | Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000                                                                                                                                                                                                                                                                         | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic M however, end, edge Shear 72.800 Automatic M however, end, edge Shear 72.800 Automatic                                                                                                                                                                                                                                                                                         | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le                                                                                                                                                           | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y"                                                           | will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | will be check to be check to be check to be check to be check will be check to be checked to be chec | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 196.875<br>k shear s<br>196.875<br>k shear s                                                                | 74.986 since more 74.986 since more 74.986                                                                            | than one<br>180.147<br>than one<br>180.147<br>than one<br>180.147                                                    | gage line 0.000 gage line 0.000 gage line 0.000                                                   | 0.000<br>exists<br>0.000<br>exists                                                 | (long edge  0.000 (long edge  0.000 (long edge  0.000                      |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr                                                                                                                                                                                  | Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000<br>reater than zero);                                                                                                                                                                                                                                                   | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic M however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge                                                                                                                                                                                                                                                                        | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci                                                                                                                                                 | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y" ng dis                                                    | will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no<br>stances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ot be check will be composed be check 79.787 ot be check will be composed be check 79.787 ot be check 79.787 ot be check will be composed be checked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ked for blochecked. ?? 72.800 ked for blochecked. ?? 72.800 ked for blochecked. ?? 72.800 ked for blochecked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 196.875<br>k shear s<br>196.875<br>k shear s<br>196.875<br>k shear s                                        | 74.986 since more 74.986 since more 74.986 since more                                                                 | than one<br>180.147<br>than one<br>180.147<br>than one<br>180.147<br>than one                                        | gage line 0.000 gage line 0.000 gage line 0.000 gage line                                         | 0.000 exists 0.000 exists 0.000 exists                                             | (long edge  0.000 (long edge  0.000 (long edge  0.000 (long edge           |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P                                                                                                                                                                           | Leg3 72.800 0.000 reater than zero); Leg4 90.635                                                                                                                                                                                                                                                                        | Shear 72.800 Automatic however, end, edge L/r 85.524                                                                                                                                                                                                                                                               | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci                                                                                                                                                 | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y" ng dis                                                    | will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | will be check to be check to be check to be check to be check will be check to be checked to be chec | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 196.875<br>k shear s<br>196.875<br>k shear s                                                                | 74.986 since more 74.986 since more 74.986                                                                            | than one<br>180.147<br>than one<br>180.147<br>than one<br>180.147                                                    | gage line 0.000 gage line 0.000 gage line 0.000                                                   | 0.000<br>exists<br>0.000<br>exists                                                 | (long edge  0.000 (long edge  0.000 (long edge  0.000                      |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr                                                                                                                                                                                  | Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000<br>reater than zero);<br>Leg3 72.800<br>0.000<br>reater than zero);                                                                                                                                                                                                                                                   | Shear 72.800 Automatic however, end, edge L/r 85.524 Automatic                                                                                                                                                                                                                                                                                               | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci                                                                                                                                                 | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y" ng dis                                                    | will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no<br>stances<br>6.33<br>will no<br>stances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ot be check will be composed be check 79.787 ot be check will be composed be check 79.787 ot be check 79.787 ot be check will be composed be checked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ked for blochecked. ?? 72.800 ked for blochecked. ?? 72.800 ked for blochecked. ?? 72.800 ked for blochecked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 196.875<br>k shear s<br>196.875<br>k shear s<br>196.875<br>k shear s                                        | 74.986 since more 74.986 since more 74.986 since more                                                                 | than one<br>180.147<br>than one<br>180.147<br>than one<br>180.147<br>than one                                        | gage line 0.000 gage line 0.000 gage line 0.000 gage line                                         | 0.000 exists 0.000 exists 0.000 exists                                             | (long edge  0.000 (long edge  0.000 (long edge  0.000 (long edge           |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12X 0.000                                                                                                                                                        | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 90.635 0.000                                                                                                                                                                                                                                                | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic M however, end, edge Shear 72.800 Automatic M L/r 85.524 Automatic L/r 85.524 Automatic Automatic L/r 85.524 Automatic                                                                                                                                                                                                                                                          | Member "Le and spaci Shear Member "Le and spaci Shear dember "Leg and spaci Shear Member "Le and spaci Net Sect                                                                                                                                        | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y" ng dis 91 91                                              | will no stances 6.33 will no stances 6.33 will no stances 6.33 will no stances 7.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | will be check with the check with the check will be check with the check with the check will be check with the check with t | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked for blocked. ?? 72.800 ked for blocked. ?? 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 196.875<br>k shear s<br>196.875<br>k shear s<br>196.875<br>k shear s<br>0.000                               | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524                                                   | than one 180.147 than one 180.147 than one 180.147 than one 0.000 0.000                                              | gage line 0.000 gage line 0.000 gage line 0.000 gage line 0.000                                   | 0.000 exists 0.000 exists 0.000 exists 0.000 exists                                | 0.000 (long edge 0.000 (long edge 0.000 (long edge 0.000 (long edge 0.000  |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12X 0.000 Leg12XY                                                                                                                                                | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 90.635 0.000 Leg4 90.635                                                                                                                                                                                                                                    | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic M however, end, edge Shear 72.800 Automatic however, end, edge L/r 85.524 Automatic L/r 85.524 Automatic L/r 85.524 Automatic L/r 85.524                                                                                                                                                                                                                                        | Member "Le and spaci Shear Member "Le and spaci Shear dember "Leg and spaci Shear Member "Le and spaci Net Sect                                                                                                                                        | g11P" ng dis 97 g11X" ng dis 97 11XY" ng dis 97 g11Y" ng dis 97 g11Y" ng dis                                     | will no stances 6.33 will no stances 6.33 will no 6.33 wi | ot be check will be compared to the check will be check with the check will be compared to the check will be check with the ch | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 196.875<br>k shear s<br>196.875<br>k shear s<br>196.875<br>k shear s<br>0.000                               | 74.986 since more 74.986 since more 74.986 since more 85.524                                                          | 180.147<br>than one<br>180.147<br>than one<br>180.147<br>than one<br>0.000                                           | gage line 0.000 gage line 0.000 gage line 0.000 gage line                                         | 0.000<br>exists<br>0.000<br>exists<br>0.000<br>exists<br>0.000                     | 0.000 (long edge 0.000 (long edge 0.000 (long edge 0.000 (long edge        |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12P 0.000 Leg12X 0.000 Leg12XY 0.000 Leg12Y                                                                                                                      | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 90.635 0.000 Leg4 90.635 0.000 Leg4 90.635                                                                                                                                                                                                                  | Shear 72.800 Automatic however, end, edge L/r 85.524 Automatic L/r 85.524                                                                                                                                                      | Member "Le and spaci Shear Member "Le and spaci Shear ember "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect                                                                                                                                | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y" ng dis 91 91                                              | will no stances 6.33 will no stances 6.33 will no stances 6.33 will no stances 7.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | will be check with the check with the check will be check with the check with the check will be check with the check with t | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked for blocked. ?? 72.800 ked for blocked. ?? 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 196.875<br>k shear s<br>196.875<br>k shear s<br>196.875<br>k shear s<br>0.000                               | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524                                                   | than one 180.147 than one 180.147 than one 180.147 than one 0.000 0.000                                              | gage line 0.000 gage line 0.000 gage line 0.000 gage line 0.000                                   | 0.000 exists 0.000 exists 0.000 exists 0.000 exists                                | 0.000 (long edge 0.000 (long edge 0.000 (long edge 0.000 (long edge 0.000  |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12P 0.000 Leg12X 0.000 Leg12XY 0.000 Leg12Y 0.000                                                                                                                | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000                                                                                                                                                                                          | Shear 72.800 Automatic however, end, edge L/r 85.524 Automatic                                                                             | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect Net Sect                                                                                                                      | g11P" ng dis 97 g11X" ng dis 97 11XY" ng dis 97 g11XY" ng dis 91 91 91                                           | will no stances 6.33 will no stances 6.33 will no stances 7.52 7.52 7.52 7.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ot be check will be check with the | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 196.875<br>k shear s<br>196.875<br>k shear s<br>196.875<br>k shear s<br>0.000<br>0.000<br>0.000             | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524 85.524                                            | than one 180.147 than one 180.147 than one 180.147 than one 0.000 0.000 0.000 0.000                                  | gage line 0.000 gage line 0.000 gage line 0.000 gage line 0.000 0.000 0.000                       | 0.000 exists 0.000 exists 0.000 exists 0.000 0.000 0.000                           | 0.000 (long edge 0.000 (long edge 0.000 (long edge 0.000 0.000 0.000 0.000 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12X 0.000 Leg12XY 0.000 Leg12Y 0.000 Leg12Y 0.000 Leg12Y                                                                                                         | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 72.800                                                                                                                                          | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic L/r 85.524 Automatic Shear 72.800                                                                                                                             | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect Net Sect Net Sect                                                                                                             | g11P" ng dis 97 g11X" ng dis 97 11XY" ng dis 97 g11Y" ng dis 91 91 91 109                                        | will no stances 6.33 will no stances 6.33 will no stances 7.52 7.52 7.52 7.52 7.52 7.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ot be check will be check with the check with the check will be check with the check will be check with the check will be check with the check with the check will be check with the check with the check will be check with the check wi | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 0.000 0.000 0.000 72.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 196.875<br>k shear s<br>196.875<br>k shear s<br>196.875<br>k shear s<br>0.000<br>0.000<br>0.000             | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524 85.524 85.524 85.524                              | than one 180.147 than one 180.147 than one 180.147 than one 0.000 0.000 0.000 187.500                                | gage line 0.000 gage line 0.000 gage line 0.000 cage line 0.000 0.000 0.000 0.000                 | 0.000 exists 0.000 exists 0.000 exists 0.000 0.000 0.000                           | (long edge                                                                 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12X 0.000 Leg12XY 0.000 Leg12Y 0.000 Leg12Y 0.000 Leg12Y 0.000 Leg13P 0.000                                                                                      | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 72.800 0.000                                                                                                                                                      | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic L/r 85.524 Automatic Shear 72.800 Automatic Shear 72.800 Automatic                                                                                                                                      | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect Net Sect Net Sect Net Sect Net Sect                                                                                           | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y" ng dis 91 91 91 91 91 109 g13P"                           | will no stances 6.33 will no stances 6.33 will no stances 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ot be check will be compared to be check vill be compared to be compa | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked for blocked. ?? 72.800 ked for blocked. ?? 0.000 0.000 0.000 72.800 ked for blocked for bloc | 196.875<br>k shear s<br>196.875<br>k shear s<br>196.875<br>k shear s<br>0.000<br>0.000<br>0.000             | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524 85.524 85.524 85.524                              | than one 180.147 than one 180.147 than one 180.147 than one 0.000 0.000 0.000 187.500                                | gage line 0.000 gage line 0.000 gage line 0.000 cage line 0.000 0.000 0.000 0.000                 | 0.000 exists 0.000 exists 0.000 exists 0.000 0.000 0.000                           | (long edge                                                                 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12X 0.000 Leg12XY 0.000 Leg12Y 0.000 Leg12Y 0.000 Leg12Y 0.000 Leg13P 0.000                                                                                      | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 72.800 0.000                                                                                                                                                      | Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic L/r 85.524 Automatic Shear 72.800                                                                                                                             | Member "Le and spaci Shear Member "Le and spaci Shear lember "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect Net Sect Net Sect Shear Member "Le and spaci Net Sect                                                                         | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y" ng dis 91 91 91 91 109 g13P" ng dis                       | will no stances 6.33 will no stances 6.33 will no stances 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ot be check will be compared to be check vill be compared to be compa | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked for blocked. ?? 72.800 ked for blocked. ?? 0.000 0.000 0.000 72.800 ked for blocked for bloc | 196.875 k shear s 196.875 k shear s 196.875 k shear s 0.000 0.000 0.000 0.000 168.750 k shear s             | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524 85.524 85.524 85.524                              | than one 180.147 than one 180.147 than one 180.147 than one 0.000 0.000 0.000 187.500 than one                       | gage line 0.000 gage line 0.000 gage line 0.000 cage line 0.000 0.000 0.000 0.000                 | 0.000 exists 0.000 exists 0.000 exists 0.000 0.000 0.000                           | (long edge                                                                 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12X 0.000 Leg12XY 0.000 Leg12Y 0.000 Leg12Y 0.000 Leg13P 0.000 distance (g) gr                                                                                   | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 72.800 0.000 reater than zero);                                                                                                                                                     | Shear 72.800 Automatic however, end, edge L/r 85.524 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800                                                                                       | Member "Le and spaci Shear Member "Le and spaci Shear ember "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect Net Sect Net Sect Shear Member "Le and spaci Shear                                                                             | g11P" ng dis 97 g11X" ng dis 97 11XY" ng dis 97 g11Y" ng dis 91 91 91 109 g13P" ng dis                           | will no stances 6.33 will no stances 6.33 will no stances 7.52 7.52 7.52 7.52 7.52 7.52 7.59 will no stances 17.94 will no stances 17.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ot be check will be composed to be check vill be composed to be checked to be  | ked for blochecked. ?? 72.800 ked for blochecked. ?? 72.800 ked for blochecked. ?? 72.800 ked for blochecked. ?? 0.000 0.000 72.800 ked for blochecked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 196.875 k shear s 196.875 k shear s 196.875 k shear s 0.000 0.000 0.000 168.750 k shear s                   | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524 85.524 85.524 98.030 since more 98.030            | than one 180.147 than one 180.147 than one  180.147 than one  0.000  0.000  0.000  187.500 than one  187.500         | gage line                                                                                         | 0.000 exists 0.000 exists 0.000 exists 0.000 0.000 0.000 0.000 exists              | (long edge                                                                 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12X 0.000 Leg12XY 0.000 Leg12Y 0.000 Leg12Y 0.000 Leg13P 0.000 distance (g) gr Leg13P 0.000 distance (g) gr Leg13X 0.000 distance (g) gr Leg13X                  | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 90.635 0.000 Leg4 90.635 0.000 Leg4 90.635 0.000 reater than zero); Leg4 72.800 0.000 reater than zero); Leg4 72.800 0.000 reater than zero); Leg4 72.800 0.000 reater than zero); reater than zero);                                                       | Shear 72.800 Automatic however, end, edge L/r 85.524 Automatic L/r 85.824 Automatic L/r 85.824 Automatic Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge                                   | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect Net Sect Net Sect Shear Member "Le and spaci Shear Member "Le and spaci                                                       | g11P" ng dis 97 g11X" ng dis 97 11XY" ng dis 97 g11Y" ng dis 91 91 109 g13P" ng dis 109 g13X" ng dis             | will no stances 6.33 will no stances 6.33 will no stances 7.52 7.52 7.52 7.52 7.54 will no stances 17.94 will no stances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ot be check will be composed by the  | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 0.000 0.000 0.000 72.800 ked for blocked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 196.875 k shear s 196.875 k shear s 196.875 k shear s 0.000 0.000 0.000 168.750 k shear s                   | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524 85.524 85.524 98.030 since more 98.030 since more | than one 180.147 than one 180.147 than one 180.147 than one 0.000 0.000 0.000 187.500 than one 187.500 than one      | gage line 0.000 gage line 0.000 gage line 0.000 0.000 0.000 0.000 0.000 gage line 0.000 gage line | 0.000 exists 0.000 exists 0.000 exists 0.000 0.000 0.000 0.000 exists 0.000 exists | (long edge                                                                 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12X 0.000 Leg12XY 0.000 Leg12Y 0.000 Leg13P 0.000 distance (g) gr Leg13X 0.000 distance (g) gr Leg13X                                                            | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 Leg4 90.635 0.000 Leg4 90.635 0.000 Leg4 90.635 0.000 Leg4 72.800 0.000 reater than zero); Leg4 72.800 0.000                                      | Shear 72.800 Automatic however, end, edge L/r 85.524 Automatic L/r 85.824 Automatic L/r 85.824 Automatic L/r 85.824 Automatic Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800 | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect Net Sect Net Sect Shear Member "Le and spaci Shear Member "Le and spaci Shear Member "Le and spaci                            | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 f11XY" ng dis 97 g11Y" ng dis 109 g13P" ng dis 109 g13X" ng dis | will no stances 6.33 will no stances 6.33 will no stances 7.52 7.52 7.52 7.52 7.54 will no stances 17.94 will no stances 17.94 will no stances 17.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ot be check will be composed by the check 90.635 90.635 90.635 90.635 78.526 ot be check will be composed by the check 78.526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked for blocked. ?? 72.800 ked for blocked for blocked. ?? 0.000 0.000 72.800 ked for blocked for blocked. ?? 72.800 ked for blocked for blocked. ?? 72.800 ked for blocked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196.875 k shear s 196.875 k shear s 196.875 k shear s 0.000 0.000 0.000 168.750 k shear s 168.750 k shear s | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524 85.524 85.524 98.030 since more 98.030            | than one  180.147 than one  180.147 than one  180.147 than one  0.000 0.000 0.000 187.500 than one  187.500 than one | gage line 0.000 gage line 0.000 gage line 0.000 0.000 0.000 0.000 0.000 gage line 0.000 gage line | 0.000 exists 0.000 exists 0.000 exists 0.000 0.000 0.000 0.000 exists 0.000 exists | (long edge                                                                 |
| Leg11P 0.000 distance (g) gr Leg11X 0.000 distance (g) gr Leg11XY 0.000 distance (g) gr Leg11Y 0.000 distance (g) gr Leg12P 0.000 Leg12XY 0.000 Leg12XY 0.000 Leg12Y 0.000 Leg13P 0.000 distance (g) gr Leg13X | Leg3 72.800 0.000 reater than zero); Leg4 90.635 0.000 reater than zero); Leg4 72.800 0.000 | Shear 72.800 Automatic however, end, edge L/r 85.524 Automatic L/r 85.824 Automatic L/r 85.824 Automatic L/r 85.824 Automatic Shear 72.800 Automatic however, end, edge Shear 72.800 Automatic however, end, edge Shear 72.800 | Member "Le and spaci Shear Member "Le and spaci Shear Member "Leg and spaci Shear Member "Le and spaci Net Sect Net Sect Net Sect Net Sect Shear Member "Le and spaci | g11P" ng dis 97 g11X" ng dis 97 f11XY" ng dis 97 g11Y" ng dis 91 91 109 g13P" ng dis 109 g13X"                   | will no stances 6.33 will no stances 6.33 will no stances 7.52 7.52 7.52 7.52 7.54 will no stances 17.94 will  | ot be check will be compared to be check vill be | ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 72.800 ked for blocked. ?? 0.000 0.000 0.000 72.800 ked for blocked. ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 196.875 k shear s 196.875 k shear s 196.875 k shear s 0.000 0.000 0.000 168.750 k shear s 168.750 k shear s | 74.986 since more 74.986 since more 74.986 since more 85.524 85.524 85.524 85.524 98.030 since more 98.030            | than one  180.147 than one  180.147 than one  180.147 than one  0.000 0.000 0.000 187.500 than one  187.500 than one | gage line 0.000 gage line 0.000 gage line 0.000 0.000 0.000 0.000 0.000 gage line 0.000 gage line | 0.000 exists 0.000 exists 0.000 exists 0.000 0.000 0.000 0.000 exists 0.000 exists | (long edge                                                                 |

| Leg13Y             | Leg4              | 72.800 | Shear 72.800              | Shear      |     |      | 78.526 | 72.800       | 168.750   |           | 187.500  | 0.000     | 0.000  | 0.000      |
|--------------------|-------------------|--------|---------------------------|------------|-----|------|--------|--------------|-----------|-----------|----------|-----------|--------|------------|
| 0.000              | 0.000             |        |                           |            |     |      |        | ed for block | k shear s | ince more | than one | gage line | exists | (long edge |
|                    |                   |        | however, end, edge        |            |     |      |        |              | 10 547    | 14 505    | C 100    | 0 000     | 0.000  | 0 000      |
| XBrace1P<br>0.000  | 0.000             | 9.100  | Shear 6.100<br>Automatic  | Rupture    | 11/ | 6.71 | 12.247 | 9.100        | 10.547    | 14.585    | 6.100    | 0.000     | 0.000  | 0.000      |
| XBrace1X           |                   | 9.100  | Shear 6.100               | Rupture    | 117 | 6.71 | 12.247 | 9.100        | 10.547    | 14.585    | 6.100    | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 | 11         |     |      |        |              |           |           |          |           |        |            |
| XBrace1XY          | XBrace1           | 9.100  | Shear 6.100               | Rupture    | 117 | 6.71 | 12.247 | 9.100        | 10.547    | 14.585    | 6.100    | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 |            | 445 |      | 40.045 |              | 40 545    | 4.4 505   |          |           |        |            |
| XBrace1Y           | XBracel<br>0.000  | 9.100  | Shear 6.100<br>Automatic  | Rupture    | 117 | 6.71 | 12.247 | 9.100        | 10.547    | 14.585    | 6.100    | 0.000     | 0.000  | 0.000      |
| XBrace2P           |                   | 14.594 | L/r 12.850                | Rupture    | 93  | 5.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 11.001 | Automatic                 | Rapeare    | ,,, | 0.02 | 11.001 | 10.200       | 21.001    | 11.000    | 12.000   | 0.000     | 0.000  | 0.000      |
| XBrace2X           | XBrace1           | 14.594 | L/r 12.850                | Rupture    | 93  | 5.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 |            |     |      |        |              |           |           |          |           |        |            |
| XBrace2XY          |                   | 14.594 | L/r 12.850                | Rupture    | 93  | 5.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace2Y  | 0.000<br>VBrace1  | 14.594 | Automatic<br>L/r 12.850   | Rupture    | 93  | 5.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 14.004 | Automatic                 | Rupture    | 23  | 3.32 | 14.554 | 10.200       | 21.034    | 14.505    | 12.030   | 0.000     | 0.000  | 0.000      |
| XBrace3P           | XBrace1           | 14.594 | L/r 12.850                | Rupture    | 93  | 5.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 | _          |     |      |        |              |           |           |          |           |        |            |
|                    |                   | 14.594 | L/r 12.850                | Rupture    | 93  | 5.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace3XY | 0.000             | 14.594 | Automatic<br>L/r 12.850   | Duntuno    | 93  | 5.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 14.594 | L/r 12.850<br>Automatic   | Rupture    | 93  | 3.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| XBrace3Y           |                   | 14.594 | L/r 12.850                | Rupture    | 93  | 5.32 | 14.594 | 18.200       | 21.094    | 14.585    | 12.850   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 | -          |     |      |        |              |           |           |          |           |        |            |
| XBrace4P           |                   | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 21.223   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 10 000 | Automatic                 | <b>2</b> 1 | 0.0 | F 20 | 20 540 | 10 000       | 22 224    | 20.000    | 01 000   | 0 000     | 0 000  | 0.000      |
| 0.000              | XBrace1R<br>0.000 | 18.200 | Shear 18.200<br>Automatic | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 21.223   | 0.000     | 0.000  | 0.000      |
| XBrace4XY          |                   | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 21.223   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 |            |     | ***- |        |              |           |           |          |           |        |            |
| XBrace4Y           | XBrace1R          | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 21.223   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 |            |     |      |        |              |           |           |          |           |        |            |
|                    |                   | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 21.223   | 0.000     | 0.000  | 0.000      |
| 0.000<br>YBrace5Y  | 0.000<br>XBrace1R | 18.200 | Automatic<br>Shear 18.200 | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 21.223   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 10.200 | Automatic                 | Silear     | 02  | 3.32 | 30.342 | 10.200       | 33.704    | 30.233    | 21.225   | 0.000     | 0.000  | 0.000      |
| XBrace5XY          |                   | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 21.223   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 |            |     |      |        |              |           |           |          |           |        |            |
|                    | XBrace1R          | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 21.223   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000<br>XBrace1R | 18.200 | Automatic<br>Shear 18.200 | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 20.543   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 10.200 | Automatic                 | Silear     | 02  | 3.32 | 30.342 | 10.200       | 33.904    | 30.299    | 20.343   | 0.000     | 0.000  | 0.000      |
|                    |                   | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 20.543   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 |            |     |      |        |              |           |           |          |           |        |            |
| XBrace6XY          |                   | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 20.543   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 10 000 | Automatic                 | <b>2</b> 1 | 0.0 | F 20 | 20 540 | 10 000       | 22 224    | 20.000    | 00 540   | 0 000     | 0 000  | 0.000      |
| XBrace6Y<br>0.000  | 0.000             | 18.200 | Shear 18.200<br>Automatic | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 20.543   | 0.000     | 0.000  | 0.000      |
|                    | XBrace1R          | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 20.543   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             |        | Automatic                 |            |     | ***- |        |              |           |           |          |           |        |            |
|                    |                   | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 20.543   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 40     | Automatic                 |            |     |      | 00 5:- | 40 655       | 00        |           | 00       | 0 6       |        |            |
| XBrace7XY          |                   | 18.200 | Shear 18.200              | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 20.543   | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace7Y  | 0.000<br>XBrace1R | 18 200 | Automatic<br>Shear 18.200 | Shear      | 82  | 5.32 | 30.542 | 18.200       | 33.984    | 30.299    | 20.543   | 0.000     | 0.000  | 0.000      |
| 0.000              | 0.000             | 10.200 | Automatic                 | Silear     | 92  | J.JL | 30.342 | 10.200       | JJ.JU4    | 20.227    | 20.040   | 0.000     | 0.000  | 0.000      |
|                    | 2.300             |        |                           |            |     |      |        |              |           |           |          |           |        |            |

| XBrace8P XBrace2 27.300                | Shear 17.783 Net Sect 92 5.84 28.258 27.300 42.187 17.783 32.812 0.000 0.000 0.000                                                                                                                           |    |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 0.000 0.000                            | Automatic Member "XBrace8P" will not be checked for block shear since more than one gage line exists (long edge                                                                                              | је |
|                                        | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               |    |
| XBrace8X XBrace2 27.300                |                                                                                                                                                                                                              |    |
| 0.000 0.000                            | Automatic Member "XBrace8X" will not be checked for block shear since more than one gage line exists (long edges because and engine distances will be sheared 22                                             | је |
| XBrace8XY XBrace2 27.300               | ; however, end, edge and spacing distances will be checked. ?? ) Shear 17.783 Net Sect 92 5.84 28.258 27.300 42.187 17.783 32.812 0.000 0.000 0.000                                                          |    |
| 0.000 0.000                            | Automatic Member "XBrace8XY" will not be checked for block shear since more than one gage line exists (long edu                                                                                              | те |
| distance (g) greater than zero);       | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               | •  |
| XBrace8Y XBrace2 27.300                | Shear 17.783 Net Sect 92 5.84 28.258 27.300 42.187 17.783 32.812 0.000 0.000 0.000                                                                                                                           |    |
| 0.000                                  | Automatic Member "XBrace8Y" will not be checked for block shear since more than one gage line exists (long edg                                                                                               | је |
|                                        | ; however, end, edge and spacing distances will be checked. ?? ) Shear 17.783 Net Sect 92 5.84 28.258 27.300 42.187 17.783 32.812 0.000 0.000 0.000                                                          |    |
| XBrace9P XBrace2 27.300<br>0.000 0.000 | Shear 17.783 Net Sect 92 5.84 28.258 27.300 42.187 17.783 32.812 0.000 0.000 0.000  Automatic Member "XBrace9P" will not be checked for block shear since more than one gage line exists (long edge)         | 70 |
|                                        | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               | je |
| XBrace9X XBrace2 27.300                |                                                                                                                                                                                                              |    |
| 0.000 0.000                            | Automatic Member "XBrace9X" will not be checked for block shear since more than one gage line exists (long edg                                                                                               | је |
|                                        | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               |    |
| XBrace9XY XBrace2 27.300               |                                                                                                                                                                                                              |    |
| 0.000 0.000                            | Automatic Member "XBrace9XY" will not be checked for block shear since more than one gage line exists (long edg; however, end, edge and spacing distances will be checked. ??                                | је |
| XBrace9Y XBrace2 27.300                |                                                                                                                                                                                                              |    |
| 0.000 0.000                            | Automatic Member "XBrace9Y" will not be checked for block shear since more than one gage line exists (long ed                                                                                                | те |
| distance (g) greater than zero);       | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               | •  |
| XBrace10P XBrace2 27.300               | Shear 21.509 Net Sect 92 5.84 28.258 27.300 42.187 21.509 32.812 0.000 0.000 0.000                                                                                                                           |    |
| 0.000 0.000                            | Automatic Member "XBrace10P" will not be checked for block shear since more than one gage line exists (long edg                                                                                              | је |
| 131 3                                  | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               |    |
| XBrace10X XBrace2 27.300 0.000 0.000   | ) Shear 21.509 Net Sect 92 5.84 28.258 27.300 42.187 21.509 32.812 0.000 0.000 0.000  Automatic Member "XBrace10X" will not be checked for block shear since more than one gage line exists (long education) | ~~ |
|                                        | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               | je |
| XBrace10XY XBrace2 27.300              |                                                                                                                                                                                                              |    |
| 0.000 0.000                            | Automatic Member "XBrace10XY" will not be checked for block shear since more than one gage line exists (long edg                                                                                             | је |
| distance (g) greater than zero);       | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               |    |
| XBrace10Y XBrace2 27.300               |                                                                                                                                                                                                              |    |
| 0.000                                  | Automatic Member "XBrace10Y" will not be checked for block shear since more than one gage line exists (long edge line)                                                                                       | ìе |
| XBrace11P XBrace2 27.300               | ; however, end, edge and spacing distances will be checked. ?? ) Shear 21.509 Net Sect 92 5.84 28.258 27.300 42.187 21.509 32.812 0.000 0.000 0.000                                                          |    |
| 0.000 0.000                            | Automatic Member "XBrace11P" will not be checked for block shear since more than one gage line exists (long edg                                                                                              | те |
| distance (g) greater than zero);       | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               | •  |
| XBrace11X XBrace2 27.300               | Shear 21.509 Net Sect 92 5.84 28.258 27.300 42.187 21.509 32.812 0.000 0.000 0.000                                                                                                                           |    |
| 0.000 0.000                            | Automatic Member "XBrace11X" will not be checked for block shear since more than one gage line exists (long edg                                                                                              | је |
|                                        | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               |    |
| XBrace11XY XBrace2 27.300 0.000 0.000  | Shear 21.509 Net Sect 92 5.84 28.258 27.300 42.187 21.509 32.812 0.000 0.000 0.000  Automatic Member "XBrace11XY" will not be checked for block shear since more than one gage line exists (long edge)       |    |
|                                        | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               | je |
| XBrace11Y XBrace2 27.300               |                                                                                                                                                                                                              |    |
| 0.000 0.000                            | Automatic Member "XBrace11Y" will not be checked for block shear since more than one gage line exists (long edg                                                                                              | је |
| distance (g) greater than zero);       | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               |    |
| XBrace12P XBrace3 18.200               |                                                                                                                                                                                                              |    |
| 0.000 0.000                            | Automatic Member "XBrace12P" will not be checked for block shear since more than one gage line exists (long edges because and engine distances will be sheaked 22                                            | îе |
| XBrace12X XBrace3 18.200               | ; however, end, edge and spacing distances will be checked. ?? ) Shear 18.200 Shear 71 5.84 31.380 18.200 28.125 30.238 21.875 0.000 0.000 0.000                                                             |    |
| 0.000 0.000                            | Automatic Member "XBrace12X" will not be checked for block shear since more than one gage line exists (long edu                                                                                              | те |
|                                        | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               | ,- |
| XBrace12XY XBrace3 18.200              |                                                                                                                                                                                                              |    |
| 0.000 0.000                            | Automatic Member "XBrace12XY" will not be checked for block shear since more than one gage line exists (long edge                                                                                            | је |
|                                        | ; however, end, edge and spacing distances will be checked. ??                                                                                                                                               |    |
| XBrace12Y XBrace3 18.200               | Shear 18.200 Shear 71 5.84 31.380 18.200 28.125 30.238 21.875 0.000 0.000 0.000                                                                                                                              |    |

| 0.000               | 0.000                                 | Automatic b); however, end      |                |                            |         |           | ked for block            | shear s | since more | than one  | gage line | exists | (long edge |
|---------------------|---------------------------------------|---------------------------------|----------------|----------------------------|---------|-----------|--------------------------|---------|------------|-----------|-----------|--------|------------|
|                     | XBrace3 18.2                          |                                 |                |                            |         | 31.380    | 18.200                   | 28.125  | 30.238     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       |                |                            |         |           | cked for block           | shear s | since more | than one  | gage line | exists | (long edge |
|                     | eater than zer<br>XBrace3 18.2        | o); however, end<br>00 Shear 18 | •              | _                          |         | Will be o | thecked. ??<br>18.200    | 28.125  | 30.238     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       |                |                            |         |           | ked for block            |         |            |           |           |        |            |
|                     |                                       | ); however, end                 | , edge and sp  | acing di                   | stances | will be o | checked. ??              |         |            |           |           |        |            |
| XBrace13XY<br>0.000 | XBrace3 18.2<br>0.000                 | 00 Shear 18<br>Automatic        |                |                            |         | 31.380    | 18.200<br>cked for block | 28.125  | 30.238     | 21.875    | 0.000     | 0.000  | 0.000      |
|                     |                                       | ); however, end                 |                |                            |         |           |                          | snear s | since more | than one  | gage line | exists | (long eage |
|                     | XBrace3 18.2                          |                                 |                | _                          | 5.84    |           | 18.200                   | 28.125  | 30.238     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       |                |                            |         |           | cked for block           | shear s | since more | than one  | gage line | exists | (long edge |
|                     | <b>eater than zer</b><br>XBrace4 14.6 | o); however, end<br>84 L/r 18   | •              | <b>acing d</b> i<br>ar 140 |         | 14.684    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | 5.200 Biic     | ar 140                     | 7.01    | 14.004    | 10.200                   | 20.123  | 22.013     | 21.075    | 0.000     | 0.000  | 0.000      |
|                     | XBrace4 14.6                          |                                 | 8.200 She      | ar 140                     | 7.84    | 14.684    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace14XY | 0.000<br>XBrace4 14.6                 | Automatic<br>34 L/r 18          | 8.200 She      | ar 140                     | 7.84    | 14.684    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | 5.200 Sile     | ar 140                     | 7.04    | 14.004    | 10.200                   | 20.125  | 22.013     | 21.075    | 0.000     | 0.000  | 0.000      |
|                     | XBrace4 14.6                          |                                 | 8.200 She      | ar 140                     | 7.84    | 14.684    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000<br>VBrace15D  | 0.000<br>XBrace4 14.6                 | Automatic 34 L/r 18             | 8 200 She      | ar 140                     | 7.84    | 14.684    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | 5.200 Sile     | ai iio                     | 7.04    | 14.004    | 10.200                   | 20.123  | 22.013     | 21.075    | 0.000     | 0.000  | 0.000      |
|                     | XBrace4 14.6                          |                                 | 8.200 She      | ar 140                     | 7.84    | 14.684    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace15XY | 0.000<br>XBrace4 14.6                 | Automatic<br>34 L/r 18          | 8.200 She      | ar 140                     | 7.84    | 14.684    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | 5.200 Sile     | ar 140                     | 7.04    | 14.004    | 10.200                   | 20.125  | 22.013     | 21.075    | 0.000     | 0.000  | 0.000      |
|                     | XBrace4 14.6                          |                                 | 8.200 She      | ar 140                     | 7.84    | 14.684    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace16P  | 0.000<br>XBrace4 10.7                 | Automatic 55 L/r 18             | 8 200 She      | ar 170                     | 9.58    | 10.765    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | 5.200 Sile     | ar 170                     | J. 30   | 10.703    | 10.200                   | 20.123  | 22.013     | 21.075    | 0.000     | 0.000  | 0.000      |
|                     | XBrace4 10.7                          |                                 | 8.200 She      | ar 170                     | 9.58    | 10.765    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace16XY | 0.000<br>XBrace4 10.7                 | Automatic 55 L/r 18             | 8 200 She      | ar 170                     | 9.58    | 10.765    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | 5.200 Sile     | ar 170                     | J. 30   | 10.703    | 10.200                   | 20.123  | 22.013     | 21.075    | 0.000     | 0.000  | 0.000      |
|                     | XBrace4 10.7                          |                                 | 8.200 She      | ar 170                     | 9.58    | 10.765    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace17P  | 0.000<br>XBrace4 10.7                 | Automatic<br>55 L/r 18          | 8 200 She      | ar 170                     | 9.58    | 10.765    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | 5.200          | ar 170                     | J.30    | 10.703    | 10.200                   | 20.123  | 22.013     | 21.075    | 0.000     | 0.000  | 0.000      |
| XBrace17X           |                                       |                                 | 8.200 She      | ar 170                     | 9.58    | 10.765    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace17XY | 0.000<br>XBrace4 10.7                 | Automatic 55 L/r 18             | 8.200 She      | ar 170                     | 9.58    | 10.765    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | 0.200          | ar 170                     | 3.30    | 10.700    | 10.200                   | 20.120  | 22.013     | 21.070    | 0.000     | 0.000  | 0.000      |
| XBrace17Y           |                                       |                                 | 8.200 She      | ar 170                     | 9.58    | 10.765    | 18.200                   | 28.125  | 22.813     | 21.875    | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace18P  | 0.000<br>XBrace5 5.6                  | Automatic<br>16 L/r             | 7.646 Ruptu    | re 190                     | 11.18   | 5.606     | 9.100                    | 10.547  | 17.258     | 7.646     | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | , to io itapea | 10 100                     | 11.10   | 3.000     | 3.100                    | 10.017  | 17.200     | 7.010     | 0.000     | 0.000  | 0.000      |
| XBrace18X           |                                       |                                 | 7.646 Ruptu    | re 190                     | 11.18   | 5.606     | 9.100                    | 10.547  | 17.258     | 7.646     | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace18XY | 0.000<br>XBrace5 5.6                  | Automatic<br>16 L/r             | 7.646 Ruptu    | re 190                     | 11.18   | 5.606     | 9.100                    | 10.547  | 17.258     | 7.646     | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | Rapea          |                            |         | 0.000     | 3.100                    | 10.01/  | 1200       | , . 0 1 0 | 0.000     |        | 0.000      |
| XBrace18Y           |                                       |                                 | 7.646 Ruptu    | re 190                     | 11.18   | 5.606     | 9.100                    | 10.547  | 17.258     | 7.646     | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace19P  | 0.000<br>XBrace5 5.6                  | Automatic<br>)6 L/r             | 7.646 Ruptu    | re 190                     | 11.18   | 5.606     | 9.100                    | 10.547  | 17.258     | 7.646     | 0.000     | 0.000  | 0.000      |
| 0.000               | 0.000                                 | Automatic                       | -              |                            |         |           |                          |         |            |           |           |        |            |
| XBrace19X           |                                       |                                 | 7.646 Ruptu    | re 190                     | 11.18   | 5.606     | 9.100                    | 10.547  | 17.258     | 7.646     | 0.000     | 0.000  | 0.000      |
| 0.000<br>XBrace19XY | 0.000<br>XBrace5 5.6                  | Automatic<br>16 L/r             | 7.646 Ruptu    | re 190                     | 11.18   | 5.606     | 9.100                    | 10.547  | 17.258     | 7.646     | 0.000     | 0.000  | 0.000      |
|                     |                                       | /-                              |                |                            |         |           |                          |         |            |           |           |        |            |

| 0.000              | 0.000            |       | Automatic                |           |      |         |        |        |        |        |        |       |       |       |
|--------------------|------------------|-------|--------------------------|-----------|------|---------|--------|--------|--------|--------|--------|-------|-------|-------|
| XBrace19Y          |                  | 5.606 | L/r 7.646                | Rupture   | 190  | 11.18   | 5.606  | 9.100  | 10.547 | 17.258 | 7.646  | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            |       | Automatic                | _         |      |         |        |        |        |        |        |       |       |       |
| XBrace20P          |                  | 9.100 | Shear 8.203              | Rupture   | 168  | 12.71   | 9.190  | 9.100  | 10.547 | 22.961 | 8.203  | 0.000 | 0.000 | 0.000 |
| 0.000<br>XBrace20X | 0.000<br>XBrace6 | 9.100 | Automatic<br>Shear 8.203 | Rupture   | 168  | 12.71   | 9.190  | 9.100  | 10.547 | 22.961 | 8.203  | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            |       | Automatic                |           |      |         |        |        |        |        |        |       |       |       |
| XBrace20XY         |                  | 9.100 | Shear 8.203              | Rupture   | 168  | 12.71   | 9.190  | 9.100  | 10.547 | 22.961 | 8.203  | 0.000 | 0.000 | 0.000 |
| 0.000<br>XBrace20Y | 0.000            | 9.100 | Automatic<br>Shear 8.203 | Rupture   | 160  | 12.71   | 9.190  | 9.100  | 10.547 | 22.961 | 8.203  | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | 9.100 | Automatic                | Kupture   | 100  | 12.71   | 9.190  | 9.100  | 10.547 | 22.901 | 0.203  | 0.000 | 0.000 | 0.000 |
| XBrace21P          | XBrace6          | 9.100 | Shear 8.203              | Rupture   | 168  | 12.71   | 9.190  | 9.100  | 10.547 | 22.961 | 8.203  | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | 0 100 | Automatic                | 5         | 1.00 | 10 71   | 9.190  | 9.100  | 10 547 | 00 061 | 8.203  | 0 000 | 0.000 | 0.000 |
| XBrace21X<br>0.000 | 0.000            | 9.100 | Shear 8.203<br>Automatic | Rupture   | 100  | 12.71   | 9.190  | 9.100  | 10.547 | 22.961 | 8.203  | 0.000 | 0.000 | 0.000 |
| XBrace21XY         |                  | 9.100 | Shear 8.203              | Rupture   | 168  | 12.71   | 9.190  | 9.100  | 10.547 | 22.961 | 8.203  | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | 0 100 | Automatic                |           | 1.60 | 10 51   | 0 100  | 0 100  | 10 545 | 00 061 | 0 000  | 0 000 | 0.000 | 0.000 |
| XBrace21Y<br>0.000 | 0.000            | 9.100 | Shear 8.203<br>Automatic | Rupture   | 108  | 12./1   | 9.190  | 9.100  | 10.547 | 22.961 | 8.203  | 0.000 | 0.000 | 0.000 |
| XBrace22P          |                  | 9.100 | Shear 9.100              | Shear     | 167  | 15.17   | 14.787 | 9.100  | 14.062 | 37.663 | 10.937 | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | 0 100 | Automatic                | G1        | 1.68 | 15 15   | 14 707 | 0 100  | 14 060 | 27 662 | 10 007 | 0.000 | 0.000 | 0.000 |
| XBrace22X<br>0.000 | 0.000            | 9.100 | Shear 9.100<br>Automatic | Shear     | 107  | 15.17   | 14.787 | 9.100  | 14.062 | 37.663 | 10.937 | 0.000 | 0.000 | 0.000 |
| XBrace22XY         | XBrace7          | 9.100 | Shear 9.100              | Shear     | 167  | 15.17   | 14.787 | 9.100  | 14.062 | 37.663 | 10.937 | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | 9.100 | Automatic<br>Shear 9.100 | Ch        | 1.7  | 1 5 1 7 | 14.787 | 9.100  | 14.062 | 37.663 | 10.937 | 0.000 | 0.000 | 0.000 |
| XBrace22Y<br>0.000 | 0.000            | 9.100 | Automatic                | Sileat    | 107  | 15.17   | 14./0/ | 9.100  | 14.002 | 37.003 | 10.937 | 0.000 | 0.000 | 0.000 |
| XBrace23P          | XBrace7          | 9.100 | Shear 9.100              | Shear     | 167  | 15.17   | 14.787 | 9.100  | 14.062 | 37.663 | 10.937 | 0.000 | 0.000 | 0.000 |
| 0.000<br>XBrace23X | 0.000<br>YBrace7 | 9.100 | Automatic<br>Shear 9.100 | Shear     | 167  | 15.17   | 14.787 | 9.100  | 14.062 | 37.663 | 10.937 | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | J.100 | Automatic                | Silear    | 107  | 13.17   | 14.707 | J.100  | 14.002 | 37.003 | 10.557 | 0.000 | 0.000 | 0.000 |
| XBrace23XY         |                  | 9.100 | Shear 9.100              | Shear     | 167  | 15.17   | 14.787 | 9.100  | 14.062 | 37.663 | 10.937 | 0.000 | 0.000 | 0.000 |
| 0.000<br>XBrace23Y | 0.000<br>YBrace7 | 9.100 | Automatic<br>Shear 9.100 | Shear     | 167  | 15.17   | 14.787 | 9.100  | 14.062 | 37.663 | 10.937 | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | J.100 | Automatic                | Silear    | 107  | 13.17   | 14.707 | J.100  | 14.002 | 37.003 | 10.557 | 0.000 | 0.000 | 0.000 |
| XBrace24P          |                  | 0.945 |                          | Net Sect  | 531  | 24.70   | 0.945  | 18.200 | 21.094 | 14.585 | 16.406 | 0.000 | 0.000 | 0.000 |
| 0.000<br>XBrace24X | 0.000<br>YBrace8 | 0.945 | Automatic<br>L/r 14.585  | Net Sect  | 531  | 24.70   | 0.945  | 18.200 | 21.094 | 14.585 | 16.406 | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | 0.515 | Automatic                | Nee beec  | 001  | 21.70   | 0.910  | 10.200 | 21.001 | 11.000 | 10.100 | 0.000 | 0.000 | 0.000 |
| XBrace24XY         |                  | 0.945 |                          | Net Sect  | 531  | 24.70   | 0.945  | 18.200 | 21.094 | 14.585 | 16.406 | 0.000 | 0.000 | 0.000 |
| 0.000<br>XBrace24Y | 0.000<br>XBrace8 | 0.945 | Automatic<br>L/r 14.585  | Net Sect  | 531  | 24.70   | 0.945  | 18.200 | 21.094 | 14.585 | 16.406 | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | 0.310 | Automatic                | 1.00 0000 | 001  | 21.70   | 0.510  | 10.200 | 21.001 | 11.000 | 20.100 | 0.000 | 0.000 | 0.000 |
| XBrace25P<br>0.000 |                  | 0.945 | L/r 14.585<br>Automatic  | Net Sect  | 531  | 24.70   | 0.945  | 18.200 | 21.094 | 14.585 | 16.406 | 0.000 | 0.000 | 0.000 |
| XBrace25X          | 0.000<br>XBrace8 | 0.945 | L/r 14.585               | Net Sect  | 531  | 24.70   | 0.945  | 18.200 | 21.094 | 14.585 | 16.406 | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            |       | Automatic                |           |      |         |        |        |        |        |        |       |       |       |
| XBrace25XY         | XBrace8<br>0.000 | 0.945 | L/r 14.585<br>Automatic  | Net Sect  | 531  | 24.70   | 0.945  | 18.200 | 21.094 | 14.585 | 16.406 | 0.000 | 0.000 | 0.000 |
| XBrace25Y          |                  | 0.945 | L/r 14.585               | Net Sect  | 531  | 24.70   | 0.945  | 18.200 | 21.094 | 14.585 | 16.406 | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            |       | Automatic                |           |      |         |        |        |        |        |        |       |       |       |
| Horz1P<br>0.000    | Horz1<br>0.000   | 9.100 | Shear 7.646<br>Automatic | Rupture   | 122  | 4.00    | 13.406 | 9.100  | 10.547 | 17.258 | 7.646  | 0.000 | 0.000 | 0.000 |
| Horz1X             | Horz1            | 9.100 | Shear 7.646              | Rupture   | 122  | 4.00    | 13.406 | 9.100  | 10.547 | 17.258 | 7.646  | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            | 0 100 | Automatic                | Descri    | 100  | 4 00    | 12 406 | 0 100  | 10 547 | 17 050 | 7 (16  | 0 000 | 0 000 | 0 000 |
| Horz2P<br>0.000    | Horz1<br>0.000   | 9.100 | Shear 7.646<br>Automatic | Rupture   | 122  | 4.00    | 13.406 | 9.100  | 10.547 | 17.258 | 7.646  | 0.000 | 0.000 | 0.000 |
| Horz2X             | Horz1            | 9.100 | Shear 7.646              | Rupture   | 122  | 4.00    | 13.406 | 9.100  | 10.547 | 17.258 | 7.646  | 0.000 | 0.000 | 0.000 |
| 0.000              | 0.000            |       | Automatic                |           |      |         |        |        |        |        |        |       |       |       |

|                 | Horz3P                            | Horz3                                        | 9.100                                    | Shear 9                                                 | 3.100           | Shear                                                 | 123                                     | 4.00                                 | 17.545                                    | 9.100                                    | 14.062            | 22.813                         | 10.195             | 0.000              | 0.000           | 0.000       |
|-----------------|-----------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------------------------|-----------------|-------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|-------------------|--------------------------------|--------------------|--------------------|-----------------|-------------|
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz3X                            | Horz3                                        | 9.100                                    |                                                         | 3.100           | Shear                                                 | 123                                     | 4.00                                 | 17.545                                    | 9.100                                    | 14.062            | 22.813                         | 10.195             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz4P                            | Horz1                                        | 9.100                                    |                                                         | 3.272           | Rupture                                               | 122                                     | 4.00                                 | 13.406                                    | 9.100                                    | 10.547            | 17.258                         | 8.272              | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 | -                                                     |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz4X                            | Horz1                                        | 9.100                                    |                                                         | 3.272           | Rupture                                               | 122                                     | 4.00                                 | 13.406                                    | 9.100                                    | 10.547            | 17.258                         | 8.272              | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz5P                            | Horz1                                        | 9.100                                    |                                                         | 5.873           | Rupture                                               | 122                                     | 4.00                                 | 13.406                                    | 9.100                                    | 10.547            | 17.258                         | 6.873              | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 | -                                                     |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz5Y                            | Horz1                                        | 9.100                                    | Shear 6                                                 | 5.873           | Rupture                                               | 122                                     | 4.00                                 | 13.406                                    | 9.100                                    | 10.547            | 17.258                         | 6.873              | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 | -                                                     |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz6P                            | Horz2                                        | 9.100                                    | Shear 9                                                 | 3.100           | Shear                                                 | 183                                     | 14.40                                | 11.214                                    | 9.100                                    | 14.062            | 30.090                         | 9.164              | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz6Y                            | Horz2                                        | 9.100                                    | Shear 9                                                 | .100            | Shear                                                 | 183                                     | 14.40                                | 11.214                                    | 9.100                                    | 14.062            | 30.090                         | 9.164              | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz7P                            | Horz2                                        | 9.100                                    |                                                         | 0.100           | Shear                                                 | 183                                     | 14.40                                | 11.214                                    | 9.100                                    | 14.062            | 30.090                         | 9.164              | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Horz7X                            | Horz2                                        | 9.100                                    |                                                         | 0.100           | Shear                                                 | 183                                     | 14.40                                | 11.214                                    | 9.100                                    | 14.062            | 30.090                         | 9.164              | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 | -1                                                    | 4.00                                    | 40.00                                |                                           | 0.400                                    |                   | 0.004                          | 45 404             |                    |                 |             |
| 0 000           | Arm1P                             | Arm1                                         | 9.100                                    |                                                         | 9.100           | Shear                                                 | 182                                     | 12.00                                | 14.062                                    | 9.100                                    | 21.094            | 27.231                         | 17.121             | 0.000              | 0.000           | 0.000       |
| 0.000           | 7 1 37                            | 0.000                                        | 0 100                                    | Automatic                                               | 100             | Ch                                                    | 100                                     | 10 00                                | 14 060                                    | 0 100                                    | 21 004            | 07 001                         | 17 101             | 0 000              | 0 000           | 0 000       |
| 0.000           | Arm1X                             | Arm1<br>0.000                                | 9.100                                    | Shear 9<br>Automatic                                    | 3.100           | Shear                                                 | 182                                     | 12.00                                | 14.062                                    | 9.100                                    | 21.094            | 27.231                         | 17.121             | 0.000              | 0.000           | 0.000       |
| 0.000           | Arm2P                             | Arm1                                         | 9.100                                    |                                                         | 0.100           | Shear                                                 | 61                                      | 4.00                                 | 40.905                                    | 9.100                                    | 21.094            | 27.231                         | 17.121             | 0.000              | 0.000           | 0.000       |
| 0.000           | AIMZI                             | 0.000                                        | J.100                                    | Automatic                                               |                 | Silear                                                | 01                                      | 4.00                                 | 40.505                                    | J.100                                    | 21.034            | 27.231                         | 17.121             | 0.000              | 0.000           | 0.000       |
| 0.000           | Arm3P                             | Arm2                                         | 9.100                                    |                                                         | 0.100           | Shear                                                 | 129                                     | 8.25                                 | 21.113                                    | 9.100                                    | 14.062            | 30.238                         | 18.382             | 0.000              | 0.000           | 0.000       |
| 0.000           | 11211101                          | 0.000                                        | 3.100                                    | Automatic                                               |                 | 011001                                                |                                         | 0.20                                 | 21.110                                    | 3.200                                    | 11.002            | 00.200                         | 10.002             | 0.000              | 0.000           | 0.000       |
|                 | Arm3X                             | Arm2                                         | 9.100                                    |                                                         | .100            | Shear                                                 | 129                                     | 8.25                                 | 21.113                                    | 9.100                                    | 14.062            | 30.238                         | 18.382             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Arm3XY                            | Arm2                                         | 9.100                                    | Shear 9                                                 | .100            | Shear                                                 | 129                                     | 8.25                                 | 21.113                                    | 9.100                                    | 14.062            | 30.238                         | 18.382             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Arm3Y                             | Arm2                                         | 9.100                                    | Shear 9                                                 | 3.100           | Shear                                                 | 129                                     | 8.25                                 | 21.113                                    | 9.100                                    | 14.062            | 30.238                         | 18.382             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Arm4P                             | Arm2                                         | 9.100                                    | Shear 9                                                 | 3.100           | Shear                                                 | 98                                      | 4.00                                 | 25.851                                    | 9.100                                    | 14.062            | 30.238                         | 18.382             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
|                 | Arm4Y                             | Arm2                                         | 9.100                                    |                                                         | 0.100           | Shear                                                 | 98                                      | 4.00                                 | 25.851                                    | 9.100                                    | 14.062            | 30.238                         | 18.382             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    |                    |                 |             |
| 0 000           | Arm5P                             | Arm3                                         | 18.200                                   |                                                         | 3.200           |                                                       |                                         | 12.17                                | 24.070                                    | 18.200                                   | 28.125            | 34.345                         | 25.735             | 0.000              | 0.000           | 0.000       |
| 0.000           | (-)                               | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           | ecked for block                          | snear s           | ince more                      | than one           | gage line          | exists          | (long eage  |
| distan          | Arm5X                             |                                              |                                          | however, end,<br>Shear 18                               | . eage<br>3.200 | -                                                     | _                                       | 12.17                                | 24.070                                    | 18.200                                   | 20 125            | 24 245                         | 25.735             | 0 000              | 0.000           | 0.000       |
| 0.000           | Armox                             | 0.000                                        | 18.200                                   | Automatic                                               | 5.200           |                                                       |                                         |                                      |                                           | cked for block                           | 28.125            | 34.345                         |                    | 0.000              |                 |             |
|                 | .co (a) ar                        |                                              | . zoro) :                                | however, end,                                           | odgo            |                                                       |                                         |                                      |                                           |                                          | shear s           | since more                     | than one           | gage IIne          | exists          | (long eage  |
| urstan          | Arm5XY                            | Arm3                                         | 18.200                                   |                                                         | 3.200           | _                                                     | _                                       | 12.17                                |                                           | 18.200                                   | 28.125            | 34.345                         | 25.735             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        | _0.200                                   | Automatic                                               |                 |                                                       |                                         |                                      |                                           | cked for block                           |                   |                                |                    |                    |                 |             |
|                 | ice (a) ar                        |                                              | n zero):                                 | however, end,                                           |                 |                                                       |                                         |                                      |                                           |                                          | oncur .           | THE MOTE                       | chan one           | gage IIIIc         | CALDOD          | (10lig cage |
|                 | Arm5Y                             | Arm3                                         | 18.200                                   |                                                         | 3.200           | _                                                     | _                                       | 12.17                                |                                           | 18.200                                   | 28.125            | 34.345                         | 25.735             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   | 0.000                                        |                                          | Automatic                                               |                 |                                                       |                                         |                                      |                                           | cked for block                           |                   |                                |                    |                    |                 |             |
|                 | ice (g) gr                        |                                              | n zero);                                 | however, end,                                           | edge            |                                                       |                                         |                                      |                                           |                                          |                   |                                |                    | JJ                 |                 | ,           |
|                 |                                   | Arm3                                         |                                          | Shear 18                                                |                 | Shear                                                 |                                         |                                      |                                           | 18.200                                   | 28.125            | 34.345                         | 25.735             | 0.000              | 0.000           | 0.000       |
| 0.000           |                                   |                                              |                                          |                                                         |                 | Mamban 117                                            | rm6D"                                   | will n                               | ot be che                                 | cked for block                           |                   |                                |                    |                    |                 | (long edge  |
|                 |                                   | 0.000                                        |                                          | Automatic                                               |                 | Member "A                                             | TIMOL                                   | WIII 1                               |                                           |                                          |                   |                                |                    | 9-9                | CATS CS         |             |
| distan          |                                   |                                              |                                          | however, end,                                           | edge            |                                                       |                                         |                                      |                                           | checked. ??                              |                   |                                |                    | gagee              | exis cs         |             |
| distan          |                                   | eater than                                   |                                          |                                                         |                 | and spaci                                             | ng di                                   | stances                              |                                           | checked. ??<br>18.200                    |                   | 34.345                         | 25.735             | 0.000              | 0.000           | 0.000       |
| 0.000           | ıce (g) gr<br>Arm6Y               | eater than<br>Arm3<br>0.000                  | n zero);<br>18.200                       | however, end,<br>Shear 18<br>Automatic                  | 3.200           | and spaci<br>Shear<br>Member "A                       | ng di<br>88<br>\rm6Y"                   | stances<br>4.00<br>will n            | will be<br>32.671<br>ot be che            | 18.200<br>ecked for block                | 28.125            | 34.345                         | 25.735             | 0.000              | 0.000           |             |
| 0.000           | ıce (g) gr<br>Arm6Y               | eater than<br>Arm3<br>0.000<br>eater than    | n zero);<br>18.200<br>n zero);           | however, end,<br>Shear 18<br>Automatic<br>however, end, | 3.200<br>edge   | and spaci<br>Shear<br>Member "A<br>and spaci          | ng di<br>88<br>Arm6Y"<br>ng di          | stances<br>4.00<br>will n<br>stances | will be<br>32.671<br>ot be che<br>will be | 18.200<br>ecked for block                | 28.125<br>shear s | 34.345<br>since more           | 25.735             | 0.000              | 0.000<br>exists | (long edge  |
| 0.000<br>distan | ıce (g) gr<br>Arm6Y               | Arm3<br>0.000<br>eater than<br>Arm2          | n zero);<br>18.200<br>n zero);<br>18.200 | however, end, Shear 18 Automatic however, end, Shear 18 | 3.200<br>edge   | and spaci<br>Shear<br>Member "A<br>and spaci          | ng di<br>88<br>Arm6Y"<br>ng di          | stances<br>4.00<br>will n<br>stances | will be<br>32.671<br>ot be che            | 18.200<br>ecked for block                | 28.125<br>shear s | 34.345                         | 25.735             | 0.000              | 0.000           |             |
| 0.000           | ace (g) gr<br>Arm6Y<br>ace (g) gr | Arm3<br>0.000<br>eater than<br>Arm2<br>0.000 | n zero);<br>18.200<br>n zero);<br>18.200 | however, end,<br>Shear 18<br>Automatic<br>however, end, | edge<br>3.200   | and spaci<br>Shear<br>Member "A<br>and spaci<br>Shear | .ng di<br>88<br>.rm6Y"<br>.ng di<br>129 | 4.00<br>will n<br>stances<br>8.25    | will be<br>32.671<br>ot be che<br>will be | 18.200<br>ecked for block<br>checked. ?? | 28.125<br>shear s | 34.345<br>since more<br>30.238 | 25.735<br>than one | 0.000<br>gage line | 0.000<br>exists | (long edge  |

| 0.000                | 0.000                 | Automatic                            |              |                  |        |                |          |           |          |            |        |             |
|----------------------|-----------------------|--------------------------------------|--------------|------------------|--------|----------------|----------|-----------|----------|------------|--------|-------------|
| Arm7XY               | Arm2 18.200           |                                      | Shear 12     | 29 8.25          | 21.113 | 18.200         | 28.125   | 30.238    | 40.441   | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | Dilcar 1     | 25 0.25          | 21.113 | 10.200         | 20.123   | 30.230    | 10.111   | 0.000      | 0.000  | 0.000       |
| Arm7Y                | Arm2 18.200           |                                      | Shear 12     | 29 8.25          | 21.113 | 18.200         | 28.125   | 30.238    | 40.441   | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            |              |                  |        |                |          |           |          |            |        |             |
| Arm8P                | Arm2 18.200           |                                      | Shear !      | 98 4.00          | 25.851 | 18.200         | 28.125   | 30.238    | 40.441   | 0.000      | 0.000  | 0.000       |
| 0.000<br>Arm8Y       | 0.000<br>Arm2 18.200  | Automatic<br>Shear 18.200            | Shear        | 98 4.00          | 25.851 | 18.200         | 28.125   | 30.238    | 40.441   | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | Silear .     | 70 4.00          | 23.031 | 10.200         | 20.123   | 30.230    | 40.441   | 0.000      | 0.000  | 0.000       |
| Diagonal 1P          | Diag1 19.584          |                                      | Shear 1      | 45 13.15         | 19.584 | 27.300         | 42.187   | 34.856    | 32.812   | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic Membe                      |              |                  |        |                | shear s  | ince more | than one | gage line  | exists | (long edge  |
|                      |                       | ; however, end, edge                 |              |                  |        |                |          |           |          |            |        |             |
| Diagonal 1X<br>0.000 | Diag1 19.584<br>0.000 | L/r 27.300 Automatic Membe           |              | 45 13.15         |        | 27.300         | 42.187   | 34.856    | 32.812   | 0.000      | 0.000  | 0.000       |
|                      |                       | ; however, end, edge                 |              |                  |        |                | Silear S | Ince more | chan one | gage IIIIe | exists | (10lig edge |
| Diagonal 1XY         | Diag1 19.584          |                                      |              | 45 13.15         |        | 27.300         | 42.187   | 34.856    | 32.812   | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic Member                     |              |                  |        | cked for block | shear s  |           | than one | gage line  | exists | (long edge  |
|                      |                       | ; however, end, edge                 |              |                  |        |                |          |           |          |            |        |             |
| Diagonal 1Y          | Diag1 19.584          |                                      |              | 45 13.15         |        | 27.300         | 42.187   | 34.856    | 32.812   | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic Member; however, end, edge | _            |                  |        |                | shear s  | ince more | than one | gage line  | exists | (long edge  |
| Diagonal 2P          | Diag2 7.665           |                                      | Net Sect 1:  |                  | 7.665  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | 1.00 0000 1. | 3.10             | 7.000  | 3.100          | 10.017   | ,         | 0.130    | 0.000      | 0.000  | 0.000       |
| Diagonal 2X          | Diag2 7.665           |                                      | Net Sect 1   | 13 9.43          | 7.665  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            |              |                  |        |                | 40 545   |           |          |            |        |             |
| Diagonal 3P<br>0.000 | Diag2 7.780<br>0.000  | L/r 7.309<br>Automatic               | Net Sect 1   | 11 9.28          | 7.780  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| Diagonal 3X          | Diag2 7.780           |                                      | Net Sect 1:  | 11 9.28          | 7.780  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            |              |                  |        |                |          |           |          |            |        |             |
| Diagonal 3XY         | Diag2 7.780           |                                      | Net Sect 1   | 11 9.28          | 7.780  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | Nat Cast 1:  | 11 0 00          | 7 700  | 0 100          | 10 547   | 7 200     | 0 400    | 0 000      | 0 000  | 0 000       |
| Diagonal 3Y 0.000    | Diag2 7.780<br>0.000  | L/r 7.309<br>Automatic               | Net Sect 1   | 11 9.28          | 7.780  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| Diagonal 4P          | Diag3 9.100           |                                      | Shear        | 48 4.00          | 14.428 | 9.100          | 14.062   | 9.745     | 11.320   | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            |              |                  |        |                |          |           |          |            |        |             |
| Diagonal 4Y          | Diag3 9.100           |                                      | Shear        | 48 4.00          | 14.428 | 9.100          | 14.062   | 9.745     | 11.320   | 0.000      | 0.000  | 0.000       |
| 0.000<br>Diagonal 5P | 0.000<br>Diag2 6.616  | Automatic L/r 7.309                  | Net Sect 12  | 27 10.59         | 6.616  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | Net Sect 1   | 27 10.39         | 0.010  | 9.100          | 10.547   | 7.309     | 0.490    | 0.000      | 0.000  | 0.000       |
| Diagonal 5X          | Diag2 6.616           |                                      | Net Sect 12  | 27 10.59         | 6.616  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            |              |                  |        |                |          |           |          |            |        |             |
| Diagonal 5XY         | Diag2 6.616           |                                      | Net Sect 12  | 27 10.59         | 6.616  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| 0.000<br>Diagonal 5Y | 0.000<br>Diag2 6.616  | Automatic L/r 7.309                  | Net Sect 12  | 27 10.59         | 6.616  | 9.100          | 10.547   | 7.309     | 8.490    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | NCC DCCC 1   | 27 10.33         | 0.010  | 3.100          | 10.547   | 7.303     | 0.450    | 0.000      | 0.000  | 0.000       |
| Diagonal 6P          | Diag3 9.100           |                                      | Shear        | 48 4.00          | 14.428 | 9.100          | 14.062   | 9.745     | 11.320   | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            |              |                  |        |                |          |           |          |            |        |             |
| Diagonal 6Y<br>0.000 | Diag3 9.100           | Shear 9.100<br>Automatic             | Shear        | 48 4.00          | 14.428 | 9.100          | 14.062   | 9.745     | 11.320   | 0.000      | 0.000  | 0.000       |
| 0.000<br>q60P        | 0.000<br>Inner1 9.100 |                                      | Rupture !    | 99 5.66          | 13.392 | 9.100          | 10.547   | 14.585    | 6.100    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | rapeare .    | 33 3 <b>.</b> 00 | 10.002 | 3.100          | 10.517   | 11.000    | 0.100    | 0.000      | 0.000  | 0.000       |
| g60X                 | Inner1 9.100          |                                      | Rupture      | 99 5.66          | 13.392 | 9.100          | 10.547   | 14.585    | 6.100    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | 5            | 00 5 66          | 12 222 | 0 100          | 10 545   | 14 505    | C 100    | 0.000      | 0 000  | 0.000       |
| g61P<br>0.000        | Inner1 9.100<br>0.000 | Shear 6.100<br>Automatic             | Rupture !    | 99 5.66          | 13.392 | 9.100          | 10.547   | 14.585    | 6.100    | 0.000      | 0.000  | 0.000       |
| 0.000<br>g61X        | Inner1 9.100          |                                      | Rupture !    | 99 5.66          | 13.392 | 9.100          | 10.547   | 14.585    | 6.100    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            | <u>.</u>     |                  |        |                |          |           |          |            |        |             |
| g62P                 | Inner1 9.100          |                                      | Rupture      | 99 5.66          | 13.392 | 9.100          | 10.547   | 14.585    | 6.100    | 0.000      | 0.000  | 0.000       |
| 0.000                | 0.000                 | Automatic                            |              |                  |        |                |          |           |          |            |        |             |

|        | g62X   | Inner1 | 9.100 | Shear     | 6.100 | Rupture  | 99  | 5.66  | 13.392 | 9.100 | 10.547 | 14.585 | 6.100 | 0.000 | 0.000 | 0.000 |
|--------|--------|--------|-------|-----------|-------|----------|-----|-------|--------|-------|--------|--------|-------|-------|-------|-------|
| 0.000  |        | 0.000  |       | Automatic | :     |          |     |       |        |       |        |        |       |       |       |       |
|        | g63P   | Inner1 | 9.100 | Shear     | 6.100 | Rupture  | 99  | 5.66  | 13.392 | 9.100 | 10.547 | 14.585 | 6.100 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | :     |          |     |       |        |       |        |        |       |       |       |       |
|        | g63X   | Inner1 | 9.100 | Shear     | 6.100 | Rupture  | 99  | 5.66  | 13.392 | 9.100 | 10.547 | 14.585 | 6.100 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | !     |          |     |       |        |       |        |        |       |       |       |       |
|        | g64P   | Inner2 | 1.023 | L/r       | 7.646 | Rupture  | 417 | 20.36 | 1.023  | 9.100 | 10.547 | 14.585 | 7.646 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | !     |          |     |       |        |       |        |        |       |       |       |       |
|        | g64X   | Inner2 | 1.023 | L/r       | 7.646 | Rupture  | 417 | 20.36 | 1.023  | 9.100 | 10.547 | 14.585 | 7.646 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | !     |          |     |       |        |       |        |        |       |       |       |       |
| Diago  | nal 7P | Diag2  | 9.100 | Shear     | 7.309 | Net Sect | 30  | 2.47  | 11.400 | 9.100 | 10.547 | 7.309  | 8.490 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | !     |          |     |       |        |       |        |        |       |       |       |       |
| Diago  | nal 7X | Diag2  | 9.100 | Shear     | 7.309 | Net Sect | 30  | 2.47  | 11.400 | 9.100 | 10.547 | 7.309  | 8.490 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | !     |          |     |       |        |       |        |        |       |       |       |       |
| Diagon | al 7XY | Diag2  | 9.100 | Shear     | 7.309 | Net Sect | 30  | 2.47  | 11.400 | 9.100 | 10.547 | 7.309  | 8.490 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | !     |          |     |       |        |       |        |        |       |       |       |       |
| Diago  | nal 7Y | Diag2  | 9.100 | Shear     | 7.309 | Net Sect | 30  | 2.47  | 11.400 | 9.100 | 10.547 | 7.309  | 8.490 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | !     |          |     |       |        |       |        |        |       |       |       |       |
| Diago  | nal 8P | Diag2  | 9.100 | Shear     | 7.309 | Net Sect | 30  | 2.47  | 11.400 | 9.100 | 10.547 | 7.309  | 8.490 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | !     |          |     |       |        |       |        |        |       |       |       |       |
| Diago  | nal 8X | Diag2  | 9.100 | Shear     | 7.309 | Net Sect | 30  | 2.47  | 11.400 | 9.100 | 10.547 | 7.309  | 8.490 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | :     |          |     |       |        |       |        |        |       |       |       |       |
| Diagon | al 8XY | Diag2  | 9.100 | Shear     | 7.309 | Net Sect | 30  | 2.47  | 11.400 | 9.100 | 10.547 | 7.309  | 8.490 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | :     |          |     |       |        |       |        |        |       |       |       |       |
| Diago  | nal 8Y | Diag2  | 9.100 | Shear     | 7.309 | Net Sect | 30  | 2.47  | 11.400 | 9.100 | 10.547 | 7.309  | 8.490 | 0.000 | 0.000 | 0.000 |
| 0.000  |        | 0.000  |       | Automatic | :     |          |     |       |        |       |        |        |       |       |       |       |

The model contains 223 angle members.

## Sum of Unfactored Dead Load and Drag Areas From Equipment, Input and Calculated:

| Joint<br>Label                                                                                                                                      | Dead<br>Load<br>(kips)                                                                                                                                                                             | X-Drag<br>Area<br>(ft^2)                                                                                                                                                                                             | Y-Drag<br>Area<br>(ft^2)                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1P<br>2P<br>7P<br>8P<br>9P<br>15P<br>16P<br>17P<br>18P<br>19P<br>1X<br>2X<br>2XY<br>7XY<br>7XY<br>7XY<br>7Y<br>8X<br>8XY<br>8XY<br>9XY<br>9Y<br>15X | 0.0791<br>0.108<br>0.127<br>0.123<br>0.163<br>0.0974<br>0.0398<br>0.0752<br>0.0457<br>0.00994<br>0.0791<br>0.108<br>0.108<br>0.127<br>0.127<br>0.123<br>0.123<br>0.123<br>0.163<br>0.163<br>0.0974 | 4.428<br>5.651<br>5.270<br>4.552<br>7.214<br>5.042<br>2.453<br>5.233<br>3.176<br>1.279<br>4.428<br>5.651<br>5.651<br>5.651<br>5.270<br>5.270<br>4.552<br>4.552<br>4.552<br>4.552<br>7.214<br>7.214<br>7.214<br>5.042 | 2.324<br>3.798<br>4.561<br>4.552<br>7.214<br>1.571<br>0.833<br>1.026<br>1.200<br>0.513<br>2.324<br>3.798<br>3.798<br>3.798<br>4.561<br>4.561<br>4.561<br>4.552<br>4.552<br>4.552<br>7.214<br>7.214<br>7.214<br>7.214 |
|                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |

| 16X<br>17X<br>18X<br>19XY<br>19XY<br>19Y<br>3S<br>4S<br>5S<br>6S<br>10S<br>11S<br>12S<br>13S<br>14S<br>3X | 0.0398<br>0.0732<br>0.0457<br>0.00994<br>0.00994<br>0.00994<br>0.0608<br>0.0754<br>0.129<br>0.092<br>0.128<br>0.133<br>0.14<br>0.195<br>0.37<br>0.0608 | 2.453 5.233 3.176 1.279 1.279 1.279 2.544 3.175 6.118 5.026 4.607 5.013 5.586 7.377 14.579 2.544 2.544 | 0.833<br>1.026<br>1.200<br>0.513<br>0.513<br>0.513<br>2.544<br>2.782<br>4.350<br>4.330<br>4.607<br>5.013<br>5.586<br>7.377<br>14.579<br>2.544<br>2.544 |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 Y<br>4 X                                                                                                | 0.0608<br>0.0754                                                                                                                                       | 2.544<br>3.175                                                                                         | 2.544<br>2.782                                                                                                                                         |
| 4XY<br>4Y                                                                                                 | 0.0754                                                                                                                                                 | 3.175<br>3.175                                                                                         | 2.782                                                                                                                                                  |
| 5X                                                                                                        | 0.129                                                                                                                                                  | 6.118                                                                                                  | 4.350                                                                                                                                                  |
| 5XY<br>5Y                                                                                                 | 0.129<br>0.129                                                                                                                                         | 6.118<br>6.118                                                                                         | 4.350<br>4.350                                                                                                                                         |
| 6X                                                                                                        | 0.123                                                                                                                                                  | 5.026                                                                                                  | 4.330                                                                                                                                                  |
| 6XY                                                                                                       | 0.092                                                                                                                                                  | 5.026                                                                                                  | 4.330                                                                                                                                                  |
| 6Y                                                                                                        | 0.092                                                                                                                                                  | 5.026                                                                                                  | 4.330                                                                                                                                                  |
| 10X                                                                                                       | 0.128                                                                                                                                                  | 4.607                                                                                                  | 4.607                                                                                                                                                  |
| 10XY                                                                                                      | 0.128                                                                                                                                                  | 4.607                                                                                                  | 4.607                                                                                                                                                  |
| 10Y<br>11X                                                                                                | 0.128<br>0.133                                                                                                                                         | 4.607<br>5.013                                                                                         | 4.607<br>5.013                                                                                                                                         |
| 11X<br>11XY                                                                                               | 0.133                                                                                                                                                  | 5.013                                                                                                  | 5.013                                                                                                                                                  |
| 111                                                                                                       | 0.133                                                                                                                                                  | 5.013                                                                                                  | 5.013                                                                                                                                                  |
| 12X                                                                                                       | 0.14                                                                                                                                                   | 5.586                                                                                                  | 5.586                                                                                                                                                  |
| 12XY                                                                                                      | 0.14                                                                                                                                                   | 5.586                                                                                                  | 5.586                                                                                                                                                  |
| 12Y                                                                                                       | 0.14                                                                                                                                                   | 5.586                                                                                                  | 5.586                                                                                                                                                  |
| 13X                                                                                                       | 0.195                                                                                                                                                  | 7.377                                                                                                  | 7.377                                                                                                                                                  |
| 13XY<br>13Y                                                                                               | 0.195<br>0.195                                                                                                                                         | 7.377<br>7.377                                                                                         | 7.377<br>7.377                                                                                                                                         |
| 13Y<br>14X                                                                                                | 0.195                                                                                                                                                  | 14.579                                                                                                 | 14.579                                                                                                                                                 |
| 14XY                                                                                                      | 0.37                                                                                                                                                   | 14.579                                                                                                 | 14.579                                                                                                                                                 |
| 14Y                                                                                                       | 0.37                                                                                                                                                   | 14.579                                                                                                 | 14.579                                                                                                                                                 |
| Total                                                                                                     | 8.09                                                                                                                                                   | 352.629                                                                                                | 301.126                                                                                                                                                |

Unadjusted Dead Load and Drag Areas by Section:

| Section | Unfactored | X-Drag   | Y-Drag   | X-Drag    | Y-Drag    |  |  |
|---------|------------|----------|----------|-----------|-----------|--|--|
| Label   | Dead Load  | Area All | Area All | Area Face | Area Face |  |  |
|         | (kips)     | (ft^2)   | (ft^2)   | (ft^2)    | (ft^2)    |  |  |
| 1       | 3.333      | 166.458  | 114.955  | 76.010    | 37.621    |  |  |
| 2       | 4.753      | 186.171  | 186.171  | 72.049    | 72.049    |  |  |
| Total   | 8.086      | 352.629  | 301.126  | 148.059   | 109.670   |  |  |

Angle Member Weights and Surface Areas by Section:

| Section | Unfactored | Factored | Unfactored |      | Factored |      |  |
|---------|------------|----------|------------|------|----------|------|--|
| Label   | Weight     | Weight   | Surface    | Area | Surface  | Area |  |
|         | (kips)     | (kips)   | (ft^2)     |      | (ft^2)   |      |  |

| 1     | 3.333 | 3.499 | 650.389  | 682.909  |
|-------|-------|-------|----------|----------|
| 2     | 4.753 | 4.991 | 857.800  | 900.690  |
| Total | 8.086 | 8.490 | 1508.189 | 1583.599 |

### Section Joint Information:

| Section<br>Label                                                                            | Joint<br>Label                                                                                                     | Joint<br>Elevation<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1P 2P 1X 2X 2XY 2Y 3S 3X 3XY 4S 4X 4XY 4Y 5S 5X 5XY 5Y 6S 6X 6X 7P 7X 7XY 7Y 8P 16X 19Y 19XY 19XY 19XY 10X 8X 10XY | 78.250 73.250 73.250 73.250 73.250 73.250 69.750 69.750 69.750 66.250 66.250 66.250 66.250 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 62.750 64.250 54.250 54.250 54.250 54.250 54.250 54.250 54.250 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.500 64.000 64.000 64.000 |

2 50.000 8 Y 2 10Y 44.000 2 37.500 11S 11X 37.500 2 11XY 2 11Y 37.500 37.500 2 12S 31.000 2 12X 2 12XY 31.000 31.000 12Y 31.000 13S 24.830 2 24.830 13X 2 13XY 24.830 2 13Y 24.830 2 14S 17.500 2 14X 17.500 2 14XY 17.500 2 14Y 17.500 2 0.000 9P 2 9X 0.000 2 9XY 0.000 2 0.000 9 Y

#### Sections Information:

| Section | Top    | Bottom | Joint | Member | Tran. Face | Tran. Face | Tran. Face | Long. Face | Long. Face | Long. Face |
|---------|--------|--------|-------|--------|------------|------------|------------|------------|------------|------------|
| Label   | Z      | Z      | Count | Count  | Top Width  | Bot Width  | Gross Area | Top Width  | Bot Width  | Gross Area |
|         | (ft)   | (ft)   |       |        | (ft)       | (ft)       | (ft^2)     | (ft)       | (ft)       | (ft^2)     |
| 1       | 70 250 | 50.000 | 42    | 145    | 0.00       | 4.00       | 103.000    | 28.00      | 4.00       | 274.125    |
| _       |        | 0.000  |       | 78     | 4.00       |            |            |            |            |            |

\*\*\* Insulator Data

### Clamp Properties:

Label Stock Holding
Number Capacity
(1bs)

C-EX1 5e+004

### Clamp Insulator Connectivity:

| Clamp<br>Label | Structure<br>And Tip<br>Attach |       | Min. Required<br>Vertical Load<br>(uplift)<br>(lbs) |
|----------------|--------------------------------|-------|-----------------------------------------------------|
| Clamp1         | 15P                            | C-EX1 | No Limit                                            |
| Clamp2         | 15X                            | C-EX1 | No Limit                                            |
| Clamp3         | 16P                            | C-EX1 | No Limit                                            |
| Clamp4         | 16X                            | C-EX1 | No Limit                                            |
| Clamp5         | 17P                            | C-EX1 | No Limit                                            |
| Clamp6         | 17X                            | C-EX1 | No Limit                                            |
| Clamp7         | 18P                            | C-EX1 | No Limit                                            |
| Clamp8         | 18X                            | C-EX1 | No Limit                                            |
| Clamp9         | 2P                             | C-EX1 | No Limit                                            |
| Clamp10        | 4S                             | C-EX1 | No Limit                                            |

| Clamp11 | 6S   | C-EX1 | No | Limit |
|---------|------|-------|----|-------|
| Clamp12 | 8P   | C-EX1 | No | Limit |
| Clamp13 | 10S  | C-EX1 | No | Limit |
| Clamp14 | 12S  | C-EX1 | No | Limit |
| Clamp15 | 14S  | C-EX1 | No | Limit |
| Clamp16 | 2X   | C-EX1 | No | Limit |
| Clamp17 | 4 X  | C-EX1 | No | Limit |
| Clamp18 | 6X   | C-EX1 | No | Limit |
| Clamp19 | 8X   | C-EX1 | No | Limit |
| Clamp20 | 10X  | C-EX1 | No | Limit |
| Clamp21 | 12X  | C-EX1 | No | Limit |
| Clamp22 | 14X  | C-EX1 | No | Limit |
| Clamp23 | 5S   | C-EX1 | No | Limit |
| Clamp24 | 5X   | C-EX1 | No | Limit |
| Clamp25 | 2 Y  | C-EX1 | No | Limit |
| Clamp26 | 2XY  | C-EX1 | No | Limit |
| Clamp27 | 5Y   | C-EX1 | No | Limit |
| Clamp28 | 5XY  | C-EX1 | No | Limit |
| Clamp29 | 4 Y  | C-EX1 | No | Limit |
| Clamp30 | 6Y   | C-EX1 | No | Limit |
| Clamp31 | 84   | C-EX1 | No | Limit |
| Clamp32 | 10Y  | C-EX1 | No | Limit |
| Clamp33 | 12Y  | C-EX1 | No | Limit |
| Clamp34 | 14Y  | C-EX1 | No | Limit |
| Clamp35 | 4XY  | C-EX1 | No | Limit |
| Clamp36 | 6XY  | C-EX1 | No | Limit |
| Clamp37 | 8XY  | C-EX1 | No | Limit |
| Clamp38 | 10XY | C-EX1 | No | Limit |
| Clamp39 | 12XY | C-EX1 | No | Limit |
| Clamp40 | 14XY | C-EX1 | No | Limit |
| Clamp43 | 3XY  | C-EX1 | No | Limit |
| Clamp44 | 3Y   | C-EX1 | No | Limit |

 $Loads from file: j:\ jobs\ 1330500.wi\ 04\_structural\ backup documentation\ calcs\ vev \ (4)\ pls tower\ meriden.loads from file: loads from$ 

Insulator dead and wind loads are already included in the point loads printed below.

### Loading Method Parameters:

Structure Height Summary (used for calculating wind/ice adjust with height):

| Z of ground for wind height adjust | 0.00 (ft) and structu | re Z coordinate that wi | ll be put on the centerline | ground profile in PLS-CADD. |
|------------------------------------|-----------------------|-------------------------|-----------------------------|-----------------------------|
| Ground elevation shift             | 0.00 (ft)             |                         |                             |                             |
| Z of ground with shift             | 0.00 (ft)             |                         |                             |                             |
| Z of structure top (highest joint) | 78.25 (ft)            |                         |                             |                             |
| Structure height                   | 78.25 (ft)            |                         |                             |                             |
| Structure height above ground      | 78.25 (ft)            |                         |                             |                             |
| Tower Shape                        | Rectangular           |                         |                             |                             |
|                                    |                       |                         |                             |                             |

Load distributed evenly among joints in section for section based load cases

### Vector Load Cases:

| Load Case    | Dead   | Wind   | SF for       | SF for | SF for  | SF For | Point    | Wind/Ice     | Trans.   | Longit.  | Ice    | Ice        | Temperature | Joint  |
|--------------|--------|--------|--------------|--------|---------|--------|----------|--------------|----------|----------|--------|------------|-------------|--------|
| Description  | Load   | Area   | Steel Poles  | Guys   | Insuls. | Found. | Loads    | Model        | Wind     | Wind     | Thick. | Density    |             | Displ. |
|              | Factor | Factor | Tubular Arms | s and  |         |        |          |              | Pressure | Pressure |        |            |             |        |
|              |        |        | and Towers   | Cables |         |        |          |              | (psf)    | (psf)    | (in)(  | (lbs/ft^3) | (deg F)     |        |
|              |        |        |              |        |         |        |          |              |          |          |        |            |             |        |
| NESC Heavy   | 1.5000 | 2.5000 | 1.00000      | 1.0000 | 1.0000  | 1.0000 | 30 loads | Wind on Face | 4        | 0        | 0.000  | 56.000     | 60.0        |        |
| NESC Extreme | 1.0000 | 1.0000 | 1.00000      | 1.0000 | 1.0000  | 1.0000 | 30 loads | NESC 2012    | 31       | 0        | 0.000  | 56.000     | 60.0        |        |

## Point Loads for Load Case "NESC Heavy":

| Load<br>Comment                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Longitudinal<br>Load<br>(lbs)                                      | Transverse<br>Load<br>(1bs)                                                                                  | Vertical<br>Load<br>(lbs)                                                                                            | Joint<br>Label                                                                                                |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| eax Cables<br>eax Cables<br>eax Cables | Constitution of the consti | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 799<br>906<br>906<br>906<br>800<br>906<br>906<br>207<br>185<br>204<br>182<br>238<br>332<br>609<br>207<br>185 | 1134<br>1871<br>1871<br>1133<br>1870<br>1870<br>1870<br>569<br>509<br>560<br>500<br>655<br>914<br>1673<br>569<br>509 | 15X<br>16X<br>17X<br>18X<br>15P<br>16P<br>17P<br>18P<br>2P<br>4S<br>6S<br>8P<br>10S<br>12S<br>14S<br>2X<br>4X |
| ax Cables<br>ax Cables                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                  | 182<br>238                                                                                                   | 500<br>655                                                                                                           | 8X<br>10X                                                                                                     |

| Cables | Coax | 0     | 332  | 914  | 12X |
|--------|------|-------|------|------|-----|
| Cables | Coax | 0     | 609  | 1673 | 14X |
|        |      | 1085  | 1279 | 4236 | 2X  |
|        |      | -1112 | 1139 | 3831 | 2XY |
|        |      | -1062 | 1288 | 825  | 2 P |
|        |      | 1089  | 1150 | 429  | 2 Y |
|        |      | -333  | -374 | 4298 | 5X  |
|        |      | 335   | -362 | 3921 | 5XY |
|        |      | 308   | -308 | 200  | 5s  |
|        |      | -310  | -301 | -104 | 5Y  |
|        |      |       |      |      |     |

Section Load Case Information (Standard) for "NESC Heavy":

| Section | Z     | Z      | Ave.   | Res.  | Tran  | Tran  | Tran   | Long  | Long  | Long  | Ice    | Total  |
|---------|-------|--------|--------|-------|-------|-------|--------|-------|-------|-------|--------|--------|
| Label   | of    | of     | Elev.  | Adj.  | Adj.  | Drag  | Wind   | Adj.  | Drag  | Wind  | Weight | Weight |
|         | Top   | Bottom | Above  | Wind  | Wind  | Coef  | Load   | Wind  | Coef  | Load  |        |        |
|         | _     |        | Ground | Pres. | Pres. |       |        | Pres. |       |       |        |        |
|         | (ft)  | (ft)   | (ft)   | (psf) | (psf) |       | (lbs)  | (psf) |       | (lbs) | (lbs)  | (lbs)  |
|         |       |        |        |       |       |       |        |       |       |       |        |        |
| 1       | 78.25 | 50.00  | 64.13  | 10.00 | 10.00 | 3.300 | 1241.5 | 0.00  | 3.300 | 0.0   | 0      | 5249   |
| 2       | 50.00 | 0.00   | 25.00  | 10.00 | 10.00 | 3.300 | 2377.6 | 0.00  | 3.300 | 0.0   | 0      | 7486   |

### Point Loads for Load Case "NESC Extreme":

| Joint | Vertical | Transverse | Longitudinal | Load        |
|-------|----------|------------|--------------|-------------|
| Label | Load     | Load       | Load         | Comment     |
|       | (lbs)    | (lbs)      | (lbs)        |             |
| 15X   | 249      | 574        | 0            | Shield Wire |
| 16X   | 632      | 873        | 0            | Conductor   |
| 17X   | 632      | 873        | 0            | Conductor   |
| 18X   | 632      | 873        | 0            | Conductor   |
| 15P   | 249      | 569        | 6            | Shield Wire |
| 16P   | 632      | 867        | 35           | Conductor   |
| 17P   | 632      | 867        | 35           | Conductor   |
| 18P   | 632      | 867        | 35           | Conductor   |
| 2P    | 154      | 663        | 0            | Coax Cables |
| 4S    | 138      | 592        | 0            | Coax Cables |
| 6S    | 152      | 653        | 0            | Coax Cables |
| 8P    | 136      | 582        | 0            | Coax Cables |
| 10S   | 178      | 763        | 0            | Coax Cables |
| 12S   | 248      | 1064       | 0            | Coax Cables |
| 14S   | 454      | 1947       | 0            | Coax Cables |
| 2X    | 154      | 663        | 0            | Coax Cables |
| 4 X   | 138      | 592        | 0            | Coax Cables |
| 6X    | 152      | 653        | 0            | Coax Cables |
| 8X    | 136      | 582        | 0            | Coax Cables |
| 10X   | 178      | 763        | 0            | Coax Cables |
| 12X   | 248      | 1064       | 0            | Coax Cables |
| 14X   | 454      | 1947       | 0            | Coax Cables |
| 2X    | 7256     | 4333       | 3732         |             |
| 2XY   | 7139     | 3961       | -3805        |             |
| 2P    | -4929    | 4425       | -3729        |             |
| 2 Y   | -5025    | 4053       | 3802         |             |
| 5X    | 8359     | -1292      | -1159        |             |
| 5XY   | 817      | -1266      | 1165         |             |
| 5S    | -6196    | -1186      | 1150         |             |
| 5Y    | -6191    | -1161      | -1155        |             |

## Section Load Case Information (Code) for "NESC Extreme":

| Section<br>Label | Z<br>of<br>Top | of    | Ave.<br>Elev.<br>Above<br>Ground | Adj.<br>Wind | Adj.<br>Wind | Angle<br>Face | Gross<br>Area | Soli-<br>dity | Angle | Load   | Adj. | Angle<br>Face | Long<br>Gross<br>Area | Soli- | Angle<br>Drag | Wind<br>Load | Weight | Total<br>Weight |
|------------------|----------------|-------|----------------------------------|--------------|--------------|---------------|---------------|---------------|-------|--------|------|---------------|-----------------------|-------|---------------|--------------|--------|-----------------|
|                  | (ft)           | (ft)  |                                  |              |              | (ft^2)        |               |               | COEI  |        |      |               | (ft^2)                |       | COEI          | (lbs)        | (lbs)  | (lbs)           |
| 1                | 78.25          | 50.00 | 64.13                            | 30.48        | 30.48        | 41.38         | 103.00        | 0.402         | 3.200 | 4035.7 | 0.00 | 83.61         | 274.13                | 0.305 | 3.200         | 0.0          | 0      | 3499            |
| 2                | 50.00          | 0.00  | 25.00                            | 30.48        | 30.48        | 79.25         | 600.00        | 0.132         | 3.200 | 7728.9 | 0.00 | 79.25         | 600.00                | 0.132 | 3.200         | 0.0          | 0      | 4991            |

## \*\*\* Analysis Results:

Maximum element usage is 96.54% for Angle "Leg13X" in load case "NESC Extreme" Maximum insulator usage is 19.60% for Clamp "Clamp16" in load case "NESC Extreme"



Angle Forces For All Load Cases:

Positive for tension - negative for compression

| Group<br>Label | Angle<br>Label | Max. Usage<br>For All LC | Max. Tens.<br>For All LC | Max. Comp.<br>For All LC | LC 1   | LC 2   |  |
|----------------|----------------|--------------------------|--------------------------|--------------------------|--------|--------|--|
|                |                | 8                        | (kips)                   | (kips)                   | (kips) | (kips) |  |
| Leg1           | Leg1P          | 3.59                     | 0.134                    | -0.364                   | -0.364 | 0.134  |  |
| Leg1           | Leg1X          | 14.57                    | 0.000                    | -1.474                   | -1.474 | -0.822 |  |
| Leg1           | Leg1XY         | 14.86                    | 0.000                    | -1.504                   | -1.504 | -0.938 |  |
| Leg1           | Lea1Y          | 3.29                     | 0.239                    | -0.333                   | -0.333 | 0.239  |  |

| Leg2    | Leq2P     | 15.71 | 9.657  | 0.000   | 0.133   | 9.657   |
|---------|-----------|-------|--------|---------|---------|---------|
| Leg2    | Leg2X     | 18.01 | 0.000  | -13.103 | -9.051  | -13.103 |
| Leg2    | Leg2XY    | 18.37 | 0.000  | -13.370 | -8.163  | -13.370 |
| _       | -         |       |        |         |         |         |
| Leg2    | Leg2Y     | 17.08 | 10.501 | 0.000   | 1.166   | 10.501  |
| Leg2    | Leg3P     | 31.13 | 19.135 | 0.000   | 3.331   | 19.135  |
| Leg2    | Leg3X     | 32.23 | 0.000  | -23.451 | -14.228 | -23.451 |
| Leg2    | Leg3XY    | 33.44 | 0.000  | -24.335 | -13.346 | -24.335 |
| _       |           |       |        |         |         |         |
| Leg2    | Leg3Y     | 33.77 | 20.758 | 0.000   | 4.440   | 20.758  |
| Leg2    | Leg4P     | 44.13 | 27.129 | 0.000   | 4.319   | 27.129  |
| Leg2    | Leg4X     | 45.47 | 0.000  | -33.087 | -20.439 | -33.087 |
| Leg2    | Leg4XY    | 46.88 | 0.000  | -34.115 | -19.091 | -34.115 |
| _       | -         |       |        |         |         |         |
| Leg2    | Leg4Y     | 47.58 | 29.250 | 0.000   | 5.744   | 29.250  |
| Leg2    | Leg5P     | 74.01 | 45.498 | 0.000   | 11.452  | 45.498  |
| Leg2    | Leq5X     | 75.54 | 0.000  | -52.660 | -28.025 | -52.660 |
| Leg2    | Leq5XY    | 67.12 | 0.000  | -46.792 | -26.207 | -46.792 |
| _       | -         |       |        |         |         |         |
| Leg2    | Leg5Y     | 77.47 | 47.626 | 0.000   | 13.036  | 47.626  |
| Leg2    | Leg6P     | 91.03 | 56.024 | 0.000   | 15.366  | 56.024  |
| Leg2    | Leg6X     | 92.23 | 0.000  | -64.295 | -34.799 | -64.295 |
| Leg2    | Leg6XY    | 84.44 | 0.000  | -58.861 | -32.439 | -58.861 |
| _       | -         |       |        |         |         |         |
| Leg2    | Leg6Y     | 96.10 | 59.146 | 0.000   | 17.429  | 59.146  |
| Leg3    | Leg7P     | 74.21 | 61.911 | 0.000   | 19.462  | 61.911  |
| Leg3    | Leg7X     | 72.84 | 0.000  | -69.878 | -37.256 | -69.878 |
| Leg3    | Leq7XY    | 66.96 | 0.000  | -64.238 | -34.729 | -64.238 |
|         | -         |       |        |         |         |         |
| Leg3    | Leg7Y     | 77.87 | 64.965 | 0.000   | 21.368  | 64.965  |
| Leg3    | Leg8P     | 81.18 | 67.723 | 0.000   | 21.318  | 67.723  |
| Leg3    | Leq8X     | 94.14 | 0.000  | -76.620 | -42.463 | -76.620 |
| Leg3    | Leq8XY    | 89.02 | 0.000  | -72.455 | -40.187 | -72.455 |
| _       | -         |       | 71.734 | 0.000   | 23.662  | 71.734  |
| Leg3    | Leg8Y     | 85.99 |        |         |         |         |
| Leg3    | Leg9P     | 76.44 | 63.770 | 0.000   | 18.224  | 63.770  |
| Leg3    | Leg9X     | 96.12 | 0.000  | -73.586 | -43.506 | -73.586 |
| Leg3    | Leg9XY    | 93.54 | 0.000  | -71.609 | -41.531 | -71.609 |
| Leg3    | Leq9Y     | 82.47 | 68.800 | 0.000   | 21.125  | 68.800  |
| _       | -         |       |        |         |         |         |
| Leg3    | Leg10P    | 68.72 | 57.330 | 0.000   | 15.989  | 57.330  |
| Leg3    | Leg10X    | 86.14 | 0.000  | -65.942 | -39.691 | -65.942 |
| Leg3    | Leg10XY   | 85.11 | 0.000  | -65.156 | -38.398 | -65.156 |
| Leg3    | Leg10Y    | 73.97 | 61.705 | 0.000   | 18.293  | 61.705  |
| _       | -         | 77.83 |        | 0.000   | 14.562  |         |
| Leg3    | Leg11P    |       | 56.659 |         |         | 56.659  |
| Leg3    | Leg11X    | 91.28 | 0.000  | -66.454 | -40.930 | -66.454 |
| Leg3    | Leg11XY   | 89.73 | 0.000  | -65.324 | -38.970 | -65.324 |
| Leg3    | Leg11Y    | 83.23 | 60.589 | 0.000   | 17.236  | 60.589  |
| Leg4    | Leg12P    | 65.09 | 55.666 | 0.000   | 13.878  | 55.666  |
| _       | -         |       |        |         |         |         |
| Leg4    | Leg12X    | 71.59 | 0.000  | -64.890 | -40.074 | -64.890 |
| Leg4    | Leg12XY   | 69.85 | 0.000  | -63.307 | -38.134 | -63.307 |
| Leq4    | Leq12Y    | 68.12 | 58.257 | 0.000   | 15.937  | 58.257  |
| Leg4    | Leg13P    | 71.39 | 51.972 | 0.000   | 10.969  | 51.972  |
| Lea4    | Leg13X    | 96.54 | 0.000  | -70.281 | -43.682 | -70.281 |
| _       | -         |       |        |         |         |         |
| Leg4    | Leg13XY   | 89.14 | 0.000  | -64.896 | -39.807 | -64.896 |
| Leg4    | Leg13Y    | 74.08 | 53.932 | 0.000   | 13.848  | 53.932  |
| XBrace1 | XBrace1P  | 10.08 | 0.000  | -0.917  | -0.917  | -0.685  |
| XBrace1 | XBrace1X  | 8.11  | 0.495  | 0.000   | 0.462   | 0.495   |
|         |           |       |        |         |         |         |
| XBrace1 | XBrace1XY | 10.48 | 0.639  | 0.000   | 0.498   | 0.639   |
| XBrace1 | XBrace1Y  | 10.49 | 0.000  | -0.954  | -0.954  | -0.815  |
| XBrace1 | XBrace2P  | 52.82 | 0.000  | -7.708  | -3.869  | -7.708  |
| XBrace1 | XBrace2X  | 55.44 | 7.124  | 0.000   | 2.219   | 7.124   |
|         |           | 51.47 | 6.613  | 0.000   | 2.013   | 6.613   |
| XBrace1 | XBrace2XY |       |        |         |         |         |
| XBrace1 | XBrace2Y  | 49.20 | 0.000  | -7.180  | -3.619  | -7.180  |
| XBrace1 | XBrace3P  | 5.29  | 0.000  | -0.772  | -0.155  | -0.772  |
| XBrace1 | XBrace3X  | 6.65  | 0.854  | 0.000   | 0.376   | 0.854   |
| XBrace1 | XBrace3XY | 1.75  | 0.107  | -0.255  | 0.107   | -0.255  |
| VDIACEI | VDICCOVI  | 1.10  | 0.10/  | 0.233   | 0.10/   | 0.233   |

| XBrace1  | XBrace3Y   | 1.79  | 0.230  | 0.000   | 0.101  | 0.230   |
|----------|------------|-------|--------|---------|--------|---------|
| XBrace1R | XBrace4P   | 41.72 | 0.000  | -7.594  | -2.461 | -7.594  |
| XBrace1R | XBrace4X   | 44.01 | 8.011  | 0.000   | 3.908  | 8.011   |
| XBrace1R | XBrace4XY  | 40.98 | 7.458  | 0.000   | 3.653  | 7.458   |
| XBrace1R | XBrace4Y   | 38.71 | 0.000  | -7.046  | -2.238 | -7.046  |
| XBrace1R | XBrace5P   | 0.53  | 0.096  | 0.000   | 0.040  | 0.096   |
| XBrace1R | XBrace5X   | 1.18  | 0.000  | -0.214  | -0.214 | -0.060  |
| XBrace1R | XBrace5XY  | 6.56  | 0.000  | -1.193  | -0.491 | -1.193  |
| XBrace1R | XBrace5Y   | 6.11  | 1.113  | 0.000   | 0.298  | 1.113   |
| XBrace1R | XBrace6P   | 47.17 | 0.000  | -8.584  | -3.656 | -8.584  |
| XBrace1R | XBrace6X   | 46.21 | 8.410  | 0.000   | 3.049  | 8.410   |
| XBrace1R | XBrace6XY  | 39.71 | 7.228  | 0.000   | 2.767  | 7.228   |
| XBrace1R | XBrace6Y   | 40.42 | 0.000  | -7.357  | -3.052 | -7.357  |
| XBrace1R | XBrace7P   | 10.44 | 0.000  | -1.901  | -1.237 | -1.901  |
| XBrace1R | XBrace7X   | 8.36  | 1.521  | -0.015  | -0.015 | 1.521   |
| XBrace1R | XBrace7XY  | 2.22  | 0.404  | -0.288  | -0.288 | 0.404   |
| XBrace1R | XBrace7Y   | 5.43  | 0.000  | -0.987  | -0.987 | -0.897  |
| XBrace2  | XBrace8P   | 32.70 | 0.000  | -8.928  | -4.956 | -8.928  |
| XBrace2  | XBrace8X   | 44.57 | 7.926  | 0.000   | 2.930  | 7.926   |
| XBrace2  | XBrace8XY  | 41.90 | 7.452  | 0.000   | 2.763  | 7.452   |
| XBrace2  | XBrace8Y   | 26.59 | 0.000  | -7.258  | -4.353 | -7.258  |
| XBrace2  | XBrace9P   | 2.81  | 0.000  | -0.768  | -0.251 | -0.768  |
| XBrace2  | XBrace9X   | 4.74  | 0.843  | -0.037  | -0.037 | 0.843   |
| XBrace2  | XBrace9XY  | 3.55  | 0.000  | -0.969  | -0.465 | -0.969  |
| XBrace2  | XBrace9Y   | 5.02  | 0.892  | 0.000   | 0.155  | 0.892   |
| XBrace2  | XBrace10P  | 36.05 | 0.000  | -9.842  | -5.296 | -9.842  |
| XBrace2  | XBrace10X  | 41.07 | 8.834  | 0.000   | 3.269  | 8.834   |
| XBrace2  | XBrace10XY | 36.43 | 7.836  | 0.000   | 3.034  | 7.836   |
| XBrace2  | XBrace10Y  | 28.40 | 0.000  | -7.754  | -4.465 | -7.754  |
| XBrace2  | XBrace11P  | 6.80  | 0.000  | -1.538  | -1.010 | -1.538  |
| XBrace2  | XBrace11X  | 6.67  | 1.435  | 0.000   | 0.060  | 1.435   |
| XBrace2  | XBrace11XY | 1.55  | 0.000  | -0.350  | -0.350 | -0.301  |
| XBrace2  | XBrace11Y  | 2.89  | 0.000  | -0.655  | -0.655 | -0.038  |
| XBrace3  | XBrace12P  | 60.27 | 0.000  | -10.969 | -6.677 | -10.969 |
| XBrace3  | XBrace12X  | 51.69 | 9.407  | 0.000   | 3.174  | 9.407   |
| XBrace3  | XBrace12XY | 43.98 | 8.005  | 0.000   | 2.919  | 8.005   |
| XBrace3  | XBrace12Y  | 45.35 | 0.000  | -8.253  | -5.775 | -8.253  |
| XBrace3  | XBrace13P  | 65.18 | 0.000  | -11.862 | -6.081 | -11.862 |
| XBrace3  | XBrace13X  | 62.58 | 11.390 | 0.000   | 3.739  | 11.390  |
| XBrace3  | XBrace13XY | 52.19 | 9.499  | 0.000   | 3.223  | 9.499   |
| XBrace3  | XBrace13Y  | 55.71 | 0.000  | -10.139 | -5.575 | -10.139 |
| XBrace4  | XBrace14P  | 49.04 | 0.000  | -7.200  | -3.529 | -7.200  |
| XBrace4  | XBrace14X  | 34.12 | 6.209  | 0.000   | 1.811  | 6.209   |
| XBrace4  | XBrace14XY | 42.93 | 7.813  | 0.000   | 2.479  | 7.813   |
| XBrace4  | XBrace14Y  | 54.78 | 0.000  | -8.045  | -3.586 | -8.045  |
| XBrace4  | XBrace15P  | 52.29 | 0.000  | -7.052  | -3.586 | -7.052  |
| XBrace4  | XBrace15X  | 31.68 | 5.765  | 0.000   | 1.609  | 5.765   |
| XBrace4  | XBrace15XY | 20.23 | 3.682  | 0.000   | 1.345  | 3.682   |
| XBrace4  | XBrace15Y  | 22.38 | 0.000  | -3.018  | -2.097 | -3.018  |
| XBrace4  | XBrace16P  | 22.40 | 4.078  | 0.000   | 2.019  | 4.078   |
| XBrace4  | XBrace16X  | 30.56 | 0.000  | -3.121  | -0.894 | -3.121  |
| XBrace4  | XBrace16XY | 18.26 | 0.000  | -1.866  | -0.856 | -1.866  |
| XBrace4  | XBrace16Y  | 8.53  | 1.552  | 0.000   | 0.975  | 1.552   |
| XBrace4  | XBrace17P  | 17.45 | 3.177  | 0.000   | 1.616  | 3.177   |
| XBrace4  | XBrace17X  | 27.17 | 0.000  | -2.924  | -1.109 | -2.924  |
| XBrace4  | XBrace17XY | 44.31 | 0.000  | -4.770  | -1.677 | -4.770  |
| XBrace4  | XBrace17Y  | 25.38 | 4.618  | 0.000   | 2.048  | 4.618   |
| XBrace5  | XBrace18P  | 19.64 | 1.502  | 0.000   | 0.535  | 1.502   |
| XBrace5  | XBrace18X  | 34.75 | 0.000  | -1.948  | -1.151 | -1.948  |

| XBrace5            | XBrace18XY             | 52.54          | 0.000 | -2.945           | -1.440           | -2.945           |
|--------------------|------------------------|----------------|-------|------------------|------------------|------------------|
| XBrace5            | XBrace18Y              | 36.41          | 2.784 | 0.000            | 0.947            | 2.784            |
| XBrace5            | XBrace19P              | 62.79          | 0.000 | -2.697           | -1.353           | -2.697           |
| XBrace5            | XBrace19X              | 24.07          | 1.840 | 0.000            | 0.488            | 1.840            |
| XBrace5            | XBrace19XY             | 12.75          | 0.975 | 0.000            | 0.463            | 0.975            |
| XBrace5            | XBrace19Y              | 22.45          | 0.000 | -0.964           | -0.630           | -0.964           |
| XBrace6            | XBrace20P              | 2.78           | 0.228 | 0.000            | 0.228            | 0.056            |
| XBrace6            | XBrace20X              | 2.77           | 0.141 | -0.252           | -0.252           | 0.141            |
| XBrace6            | XBrace20XY             | 20.85          | 0.000 | -1.897           | -0.764           | -1.897           |
| XBrace6            | XBrace20Y              | 23.09          | 1.894 | 0.000            | 0.907            | 1.894            |
| XBrace6            | XBrace21P              | 7.74           | 0.635 | 0.000            | 0.291            | 0.635            |
| XBrace6            | XBrace21X              | 10.19          | 0.000 | -0.685           | -0.490           | -0.685           |
| XBrace6            | XBrace21XY             | 19.40          | 0.000 | -1.303           | -0.359           | -1.303           |
| XBrace6            | XBrace21Y              | 23.73          | 1.946 | 0.000            | 0.965            | 1.946            |
| XBrace7            | XBrace22P              | 6.80           | 0.000 | -0.619           | -0.124           | -0.619           |
| XBrace7            | XBrace22X              | 2.82<br>15.40  | 0.204 | -0.257           | -0.257           | 0.204            |
| XBrace7            | XBrace22XY             |                | 0.000 | -1.401           | -0.853           |                  |
| XBrace7<br>XBrace7 | XBrace22Y<br>XBrace23P | 13.45<br>19.27 | 1.224 | 0.000<br>-1.754  | 0.381            | 1.224<br>-1.754  |
| XBrace7            | XBrace23X              | 11.22          | 1.021 | 0.000            | -0.938<br>0.224  | 1.021            |
| XBrace7            | XBrace23XY             | 5.47           | 0.498 | 0.000            | 0.338            | 0.498            |
| XBrace7            | XBrace23Y              | 5.54           | 0.000 | -0.504           | -0.274           | -0.504           |
| XBrace8            | XBrace24P              | 39.51          | 5.763 | 0.000            | 1.522            | 5.763            |
| XBrace8            | XBrace24X              | 0.00           | 0.000 | 0.000            | 0.000            | 0.000            |
| XBrace8            | XBrace24XY             | 10.18          | 1.484 | 0.000            | 0.507            | 1.484            |
| XBrace8            | XBrace24Y              | 0.00           | 0.000 | 0.000            | 0.000            | 0.000            |
| XBrace8            | XBrace25P              | 10.75          | 1.567 | 0.000            | 1.100            | 1.567            |
| XBrace8            | XBrace25X              | 27.02          | 3.941 | 0.000            | 1.114            | 3.941            |
| XBrace8            | XBrace25XY             | 32.19          | 4.696 | 0.000            | 0.891            | 4.696            |
| XBrace8            | XBrace25Y              | 0.00           | 0.000 | 0.000            | 0.000            | 0.000            |
| Horz1              | Horz1P                 | 59.13          | 4.521 | 0.000            | 2.524            | 4.521            |
| Horz1              | Horz1X                 | 41.92          | 0.000 | -3.814           | -0.400           | -3.814           |
| Horz1              | Horz2P                 | 15.45          | 1.181 | 0.000            | 1.181            | 0.406            |
| Horz1              | Horz2X                 | 13.09          | 1.001 | 0.000            | 1.001            | 0.189            |
| Horz3              | Horz3P                 | 89.45          | 8.140 | 0.000            | 4.672            | 8.140            |
| Horz3              | Horz3X                 | 81.28          | 0.000 | -7.397           | -1.993           | -7.397           |
| Horz1              | Horz4P                 | 17.84          | 0.000 | -1.623           | -0.905           | -1.623           |
| Horz1              | Horz4X                 | 16.82          | 1.391 | 0.000            | 0.461            | 1.391            |
| Horz1              | Horz5P                 | 1.40           | 0.000 | -0.128           | -0.060           | -0.128           |
| Horz1              | Horz5Y                 | 0.75           | 0.000 | -0.068           | -0.039           | -0.068           |
| Horz2              | Horz6P                 | 26.24          | 0.000 | -2.388           | -0.818           | -2.388           |
| Horz2              | Horz6Y                 | 8.33           | 0.000 | -0.758           | -0.130           | -0.758           |
| Horz2              | Horz7P                 | 0.90           | 0.082 | -0.001           | -0.001           | 0.082            |
| Horz2              | Horz7X                 | 47.17          | 0.000 | -4.292           | -1.087           | -4.292           |
| Arm1               | Arm1P                  | 24.22          | 2.204 | 0.000            | 2.204            | 0.092            |
| Arm1               | Arm1X                  | 42.58          | 3.874 | 0.000            | 3.874            | 1.456            |
| Arm1               | Arm2P                  | 70.01          | 6.371 | 0.000            | 6.371            | 2.000            |
| Arm2               | Arm3P                  | 22.74<br>12.21 | 0.000 | -2.070<br>-1.111 | -2.070<br>-1.111 | -1.149<br>-0.080 |
| Arm2<br>Arm2       | Arm3X<br>Arm3XY        | 12.21          | 0.000 | -1.111           | -1.111           | -0.067           |
| Arm2               | Arm3Y                  | 22.68          | 0.000 | -2.064           | -2.064           | -0.999           |
| Arm2               | Arm4P                  | 24.65          | 0.000 | -2.064           | -2.064           | -0.664           |
| Arm2               | Arm4Y                  | 24.63          | 0.000 | -2.244           | -2.244           | -0.556           |
| Arm3               | Arm5P                  | 30.89          | 0.000 | -5.623           | -5.623           | -2.183           |
| Arm3               | Arm5X                  | 24.84          | 0.000 | -4.522           | -4.522           | -0.821           |
| Arm3               | Arm5XY                 | 25.16          | 0.000 | -4.579           | -4.579           | -0.946           |
| Arm3               | Arm5Y                  | 30.76          | 0.000 | -5.597           | -5.597           | -1.864           |
| Arm3               | Arm6P                  | 11.49          | 0.000 | -2.092           | -2.092           | -0.544           |
| Arm3               | Arm6Y                  | 13.01          | 0.000 | -2.367           | -2.367           | -0.919           |
|                    |                        |                |       | =                |                  |                  |

| Arm2   | Arm7P        | 13.22 | 0.000 | -2.406 | -2.406 | -1.392 |
|--------|--------------|-------|-------|--------|--------|--------|
| Arm2   | Arm7X        | 7.29  | 0.046 | -1.328 | -1.328 | 0.046  |
| Arm2   | Arm7XY       | 8.05  | 0.000 | -1.465 | -1.465 | -0.374 |
| Arm2   | Arm7Y        | 12.83 | 0.000 | -2.334 | -2.334 | -1.000 |
| Arm2   | Arm8P        | 0.81  | 0.148 | -0.131 | -0.131 | 0.148  |
| Arm2   | Arm8Y        | 3.75  | 0.000 | -0.683 | -0.587 | -0.683 |
| Diag1  | Diagonal 1P  | 8.60  | 0.000 | -1.684 | -1.684 | -0.443 |
| Diag1  | Diagonal 1X  | 8.61  | 0.000 | -1.685 | -1.685 | -0.433 |
| Diag1  | Diagonal 1XY | 8.56  | 0.000 | -1.677 | -1.677 | -0.421 |
| Diag1  | Diagonal 1Y  | 8.56  | 0.000 | -1.676 | -1.676 | -0.395 |
| Diag2  | Diagonal 2P  | 49.48 | 3.616 | 0.000  | 3.616  | 1.309  |
| Diag2  | Diagonal 2X  | 49.52 | 3.619 | 0.000  | 3.619  | 1.323  |
| Diag2  | Diagonal 3P  | 29.43 | 2.151 | 0.000  | 2.151  | 0.919  |
| Diag2  | Diagonal 3X  | 27.65 | 2.021 | 0.000  | 2.021  | 0.509  |
| Diag2  | Diagonal 3XY | 29.88 | 2.184 | 0.000  | 2.184  | 0.995  |
| Diag2  | Diagonal 3Y  | 28.40 | 2.076 | 0.000  | 2.076  | 0.646  |
| Diag3  | Diagonal 4P  | 30.94 | 2.816 | 0.000  | 2.816  | 1.006  |
| Diag3  | Diagonal 4Y  | 27.48 | 2.501 | 0.000  | 2.501  | 0.321  |
| Diag2  | Diagonal 5P  | 71.53 | 5.228 | 0.000  | 5.228  | 1.606  |
| Diag2  | Diagonal 5X  | 69.38 | 5.071 | 0.000  | 5.071  | 1.333  |
| Diag2  | Diagonal 5XY | 70.31 | 5.139 | 0.000  | 5.139  | 1.476  |
| Diag2  | Diagonal 5Y  | 71.29 | 5.211 | 0.000  | 5.211  | 1.509  |
| Diag3  | Diagonal 6P  | 31.12 | 2.832 | 0.000  | 2.832  | 1.011  |
| Diag3  | Diagonal 6Y  | 30.03 | 2.733 | 0.000  | 2.733  | 1.002  |
| Inner1 | g60P         | 5.02  | 0.000 | -0.457 | -0.229 | -0.457 |
| Inner1 | g60X         | 7.32  | 0.447 | -0.013 | -0.013 | 0.447  |
| Inner1 | g61P         | 3.24  | 0.000 | -0.295 | -0.068 | -0.295 |
| Inner1 | g61X         | 3.93  | 0.240 | 0.000  | 0.061  | 0.240  |
| Inner1 | g62P         | 4.95  | 0.302 | 0.000  | 0.302  | 0.038  |
| Inner1 | g62X         | 6.46  | 0.394 | 0.000  | 0.394  | 0.067  |
| Inner1 | g63P         | 7.51  | 0.000 | -0.684 | -0.297 | -0.684 |
| Inner1 | g63X         | 8.15  | 0.497 | 0.000  | 0.060  | 0.497  |
| Inner2 | g64P         | 35.29 | 0.000 | -0.361 | -0.361 | 0.000  |
| Inner2 | g64X         | 11.80 | 0.381 | -0.121 | -0.121 | 0.381  |
| Diag2  | Diagonal 7P  | 59.04 | 4.315 | 0.000  | 4.315  | 1.313  |
| Diag2  | Diagonal 7X  | 57.42 | 4.197 | 0.000  | 4.197  | 1.224  |
| Diag2  | Diagonal 7XY | 58.19 | 4.253 | 0.000  | 4.253  | 1.342  |
| Diag2  | Diagonal 7Y  | 58.85 | 4.301 | 0.000  | 4.301  | 1.234  |
| Diag2  | Diagonal 8P  | 40.02 | 2.925 | 0.000  | 2.925  | 0.785  |
| Diag2  | Diagonal 8X  | 38.95 | 2.847 | 0.000  | 2.847  | 0.764  |
| Diag2  | Diagonal 8XY | 39.47 | 2.885 | 0.000  | 2.885  | 0.845  |
| Diag2  | Diagonal 8Y  | 39.89 | 2.916 | 0.000  | 2.916  | 0.730  |

Equilibrium Joint Positions and Rotations for Load Case "NESC Heavy":

| Joint<br>Label | X-Displ<br>(ft)       | Y-Displ<br>(ft)  | Z-Displ<br>(ft)      | X-Rot<br>(deg) | Y-Rot<br>(deg) | Z-Rot<br>(deg) | X-Pos<br>(ft)         | Y-Pos<br>(ft) | Z-Pos<br>(ft)  |
|----------------|-----------------------|------------------|----------------------|----------------|----------------|----------------|-----------------------|---------------|----------------|
| 1P             | 0.01209               | 0.2029           | 0.002771             | -0.3425        | 0.0215         | 0.0496         | 0.01209               | -1.797        | 78.25          |
| 2P             | 0.01016               | 0.1745           | 0.002172             | -0.3539        | 0.0162         | 0.0464         | 2.01                  | -1.826        | 73.25          |
| 7P             | 0.003528              | 0.06998          | 0.0004356            | -0.2353        | 0.0037         | 0.0415         | 2.004                 | -1.93         | 54.25          |
| 8P             | 0.002526              | 0.05329          | -0.0003932           | -0.1972        | 0.0266         | 0.0449         | 2.003                 | -1.947        | 50             |
| 9P             | 0                     | 0                | 0                    | 0.0000         |                | 0.0000         | 10                    | -10           | 0              |
| 15P            | 0.02255               | 0.2026           |                      | -0.3262        |                | 0.0500         | 0.02255               |               | 78.32          |
| 16P            | 0.01718               | 0.1733           |                      | -0.2717        |                | 0.0504         | 0.01718               |               |                |
| 17P            | 0.01604               | 0.1128           | -0.1418              | 1.1562         |                | 0.0467         | 0.01604               |               |                |
| 18P            | 0.009726              | 0.06909          |                      | -0.2226        | 0.0162         |                | 0.009726              |               |                |
| 19P            | -0.2854               | 0.09933          | -0.03                | 0.0000         | 0.0000         |                | 1.715                 |               | 64.47          |
| 1X<br>2X       | 0.008613              | 0.2034           | -0.02151             | -0.3547        | 0.0213         | 0.0497         | 0.008613<br>2.007     |               | 78.23<br>73.23 |
| 2XY            | 0.007008              | 0.1741           | -0.02019             |                |                | 0.0503         | -1.993                | 2.171         |                |
| 2X1<br>2Y      | 0.01024               | 0.171            | 0.003693             |                | 0.0287         |                |                       | -1.829        |                |
| 7X             | 0.001002              | 0.06993          | -0.01538             |                | 0.0358         |                | 2.001                 |               | 54.23          |
| 7XY            | 0.0003182             | 0.06687          | -0.01428             |                |                |                | -2                    | 2.067         |                |
| 7Y             | 0.003822              | 0.06697          | 0.001552             |                |                | 0.0422         | -1.996                | -1.933        |                |
| 8X             | -0.0004563            | 0.05326          | -0.01369             | -0.1850        | -0.0045        | 0.0396         | 2                     | 2.053         | 49.99          |
| 8XY            | -0.0002793            | 0.05033          | -0.01271             | -0.1844        | 0.0289         | 0.0345         | -2                    | 2.05          | 49.99          |
| 84             | 0.002438              | 0.05036          | 0.0006385            | -0.1965        | 0.0039         | 0.0318         | -1.998                | -1.95         | 50             |
| 9X             | 0                     | 0                | 0                    | 0.0000         |                | 0.0000         | 10                    | 10            | 0              |
| 9XY            | 0                     | 0                | 0                    | 0.0000         | 0.0000         |                | -10                   | 10            | 0              |
| 9Y             | 0                     | 0                | 0                    | 0.0000         | 0.0000         |                | -10                   | -10           | 0              |
| 15X            | -0.001836             | 0.2041           | -0.09935             |                | 0.0208         |                | -0.001836             |               | 78.15          |
|                | -0.0002116            | 0.1718           |                      | -0.4273        |                |                | -0.0002116            | 10.17         |                |
| 17X<br>18X     | -0.00677<br>-0.005533 | 0.1053           | -0.3002              | -1.8233        | 0.0180         |                | -0.00677<br>-0.005533 | 14.11         |                |
| 19X            | -0.2805               | 0.1443           | 0.01146              | 0.0000         | 0.0000         |                |                       | -3.606        |                |
| 19XY           | 0.2973                | 0.1415           | 0.01140              | 0.0000         |                | 0.0000         |                       | -3.608        |                |
| 19Y            | 0.29                  | 0.09648          | -0.02877             | 0.0000         | 0.0000         |                | -1.71                 |               | 64.47          |
| 3S             | 0.008965              | 0.1524           | 0.002235             |                |                | 0.0460         |                       | -1.848        |                |
| 4S             | 0.007237              | 0.1313           | 0.002132             |                | 0.0205         | 0.0458         |                       | -1.869        |                |
| 5S             | 0.006468              | 0.1119           | 0.001968             | -0.2560        | 0.0150         | 0.0455         | 2.006                 | -1.888        | 62.75          |
| 6S             | 0.00401               | 0.08907          | 0.001331             | -0.3004        | 0.0253         | 0.0434         | 2.004                 | -1.911        | 58.5           |
| 10S            | 0.0002398             | 0.03813          | 0.0002859            |                | 0.0179         |                |                       | -2.922        | 44             |
| 11S            | 0.0009934             | 0.02691          | 0.0009134            |                |                | 0.0406         |                       | -3.973        | 37.5           |
| 12S            | 6.203e-005            | 0.01933          | 0.0008442            |                |                | 0.0289         |                       | -5.021        | 31             |
|                | 2.054e-005            | 0.01324          | 0.0008299            |                |                | 0.0219         |                       | -6.014        |                |
| 14S            | -0.0001748            | 0.00961          | 0.0003593            |                |                | 0.0146         | 7.2                   | -7.19         | 17.5           |
| 3X<br>3XY      | 0.005654<br>0.00541   | 0.1524<br>0.1489 | -0.02118<br>-0.01972 |                |                | 0.0462         | 2.006<br>-1.995       | 2.152         | 69.73          |
| 3X1            | 0.00341               | 0.1469           | 0.003703             |                |                | 0.0492         |                       | -1.851        |                |
| 4X             | 0.004834              | 0.132            | -0.0204              |                | 0.0252         |                | 2.005                 |               | 66.23          |
| 4XY            | 0.003797              | 0.1286           | -0.01898             |                |                | 0.0483         | -1.996                | 2.129         |                |
| 4Y             | 0.007941              | 0.1279           | 0.003544             |                |                | 0.0479         |                       | -1.872        |                |
| 5X             | 0.003262              | 0.1116           | -0.01932             |                | 0.0035         |                | 2.003                 | 2.112         |                |
| 5XY            | 0.003034              | 0.1084           | -0.01797             | -0.3708        | 0.0341         | 0.0472         | -1.997                | 2.108         | 62.73          |
| 5Y             | 0.006275              | 0.1086           | 0.003309             | -0.2546        | 0.0247         | 0.0462         | -1.994                | -1.891        | 62.75          |
| 6X             | 0.003472              | 0.0898           | -0.01755             |                |                | 0.0419         | 2.003                 |               | 58.48          |
| 6XY            | 0.0002088             | 0.08661          | -0.01631             | -0.2641        | 0.0206         | 0.0451         | -2                    | 2.087         | 58.48          |

| 6Y   | 0.005919  | 0.08597  | 0.002573  | -0.2987 | 0.0116  | 0.0443 | -1.994 | -1.914 | 58.5  |
|------|-----------|----------|-----------|---------|---------|--------|--------|--------|-------|
| 10X  | 0.0005983 | 0.03925  | -0.01296  | -0.1113 | -0.0047 | 0.0407 | 2.961  | 2.999  | 43.99 |
| 10XY | -0.004598 | 0.03503  | -0.01181  | -0.1142 | 0.0233  | 0.0222 | -2.965 | 2.995  | 43.99 |
| 10Y  | 0.003141  | 0.03403  | 0.001607  | -0.1194 | 0.0051  | 0.0191 | -2.957 | -2.926 | 44    |
| 11X  | -0.002962 | 0.02763  | -0.01228  | -0.0922 | 0.0217  | 0.0364 | 3.997  | 4.028  | 37.49 |
| 11XY | -0.004282 | 0.02216  | -0.01095  | -0.0925 | -0.0016 | 0.0148 | -4.004 | 4.022  | 37.49 |
| 11Y  | 0.001148  | 0.02174  | 0.0024    | -0.0879 | 0.0125  | 0.0127 | -3.999 | -3.978 | 37.5  |
| 12X  | -0.004427 | 0.0193   | -0.01102  | -0.0573 | -0.0064 | 0.0259 | 5.036  | 5.059  | 30.99 |
| 12XY | -0.005768 | 0.01306  | -0.009429 | -0.0589 | 0.0223  | 0.0131 | -5.046 | 5.053  | 30.99 |
| 12Y  | 0.001133  | 0.01282  | 0.002533  | -0.0655 | -0.0002 | 0.0110 | -5.039 | -5.027 | 31    |
| 13X  | -0.005199 | 0.01433  | -0.00917  | -0.0393 | 0.0156  | 0.0213 | 6.022  | 6.042  | 24.82 |
| 13XY | -0.007663 | 0.00696  | -0.007465 | -0.0473 | 0.0145  | 0.0100 | -6.035 | 6.034  | 24.82 |
| 13Y  | 0.0005798 | 0.006274 | 0.002508  | -0.0477 | 0.0048  | 0.0072 | -6.027 | -6.021 | 24.83 |
| 14X  | -0.007987 | 0.009296 | -0.007471 | -0.0388 | -0.0024 | 0.0111 | 7.192  | 7.209  | 17.49 |
| 14XY | -0.007984 | 0.001216 | -0.005524 | -0.0265 | -0.0099 | 0.0027 | -7.208 | 7.201  | 17.49 |
| 14Y  | 0.0002396 | 0.00127  | 0.002192  | -0.0233 | 0.0005  | 0.0039 | -7.2   | -7.199 | 17.5  |

## Joint Support Reactions for Load Case "NESC Heavy":

| Joint | X      | X     | Y      | Y     | H-Shear | Z      | Comp. | Uplift | Result. | Result. | X      | X-M.  | Y      | Y-M.  | H-Bend-M | Z      | Z-M.  | Max.  |
|-------|--------|-------|--------|-------|---------|--------|-------|--------|---------|---------|--------|-------|--------|-------|----------|--------|-------|-------|
| Label | Force  | Usage | Force  | Usage | Usage   | Force  | Usage | Usage  | Force   | Usage   | Moment | Usage | Moment | Usage | Usage    | Moment | Usage | Usage |
|       | (kips) | 용     | (kips) | 용     | %       | (kips) | 8     | 8      | (kips)  | 8       | (ft-k) | 용     | (ft-k) | 용     | %        | (ft-k) | 8     | 8     |
| 9P    | 2.66   | 0.0   | -3.11  | 0.0   | 0.0     | 12.31  | 0.0   | 0.0    | 12.97   | 0.0     | 0.21   | 0.0   | 0.0    | 0.0   | 0.0      | 0.01   | 0.0   | 0.0   |
| 9X    | -6.04  | 0.0   | -6.68  | 0.0   | 0.0     | -42.09 | 0.0   | 0.0    | 43.04   | 0.0     | 0.14   | 0.0   | 0.3    | 0.0   | 0.0      | 0.05   | 0.0   | 0.0   |
| 9XY   | 6.16   | 0.0   | -5.84  | 0.0   | 0.0     | -38.72 | 0.0   | 0.0    | 39.64   | 0.0     | -0.08  | 0.0   | 0.2    | 0.0   | 0.0      | 0.04   | 0.0   | 0.0   |
| 97    | -2.78  | 0.0   | -2.44  | 0.0   | 0.0     | 13.88  | 0.0   | 0.0    | 14.37   | 0.0     | -0.05  | 0.0   | 0.0    | 0.0   | 0.0      | 0.01   | 0.0   | 0.0   |

## Joint Displacements, Loads and Member Forces on Joints for Load Case "NESC Heavy":

| Joint X<br>Label | External<br>Load<br>(kips) | Y External 2<br>Load<br>(kips) | Z External<br>Load<br>(kips) | X Member<br>Force<br>(kips) | Y Member<br>Force<br>(kips) | Z Member<br>Force<br>(kips) | X<br>Disp.<br>(ft) | Y<br>Disp.<br>(ft) | Z<br>Disp.<br>(ft) |
|------------------|----------------------------|--------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|--------------------|--------------------|
| 1P               | 0.0000                     | 0.0137                         | -0.1245                      | -0.0000                     | -0.0137                     | 0.1245                      | 0.0121             | 0.2029             | 0.0028             |
| 2P               | -1.0620                    | 1.5598                         | -1.5646                      | 1.0620                      | -1.5598                     | 1.5646                      | 0.0102             | 0.1745             | 0.0022             |
| 7P               | 0.0000                     | 0.0978                         | -0.1997                      | -0.0000                     | -0.0978                     | 0.1997                      | 0.0035             | 0.0700             | 0.0004             |
| 8P               | 0.0000                     | 0.2913                         | -0.6945                      | 0.0000                      | -0.2913                     | 0.6945                      | 0.0025             | 0.0533             | -0.0004            |
| 9P               | 0.0000                     | 0.1893                         | -0.2563                      | -2.6616                     | 2.9217                      | 12.5616                     | 0.0000             | 0.0000             | 0.0000             |
| 15P              | 0.0000                     | 0.8518                         | -1.2865                      | -0.0000                     | -0.8518                     | 1.2865                      | 0.0225             | 0.2026             | 0.0726             |
| 16P              | 0.0000                     | 0.9335                         | -1.9328                      | -0.0000                     | -0.9335                     | 1.9328                      | 0.0172             | 0.1733             | 0.0445             |
| 17P              | 0.0000                     | 0.9399                         | -1.9852                      | -0.0000                     | -0.9399                     | 1.9852                      | 0.0160             | 0.1128             | -0.1418            |
| 18P              | 0.0000                     | 0.9456                         | -1.9420                      | -0.0000                     | -0.9456                     | 1.9420                      |                    | 0.0691             | 0.0324             |
| 19P              | 0.0000                     | 0.0000                         | -0.0157                      | -0.0000                     | -0.0000                     | 0.0157                      | -0.2854            | 0.0993             | -0.0300            |
| 1X               | 0.0000                     | 0.0000                         | -0.1245                      | -0.0000                     | -0.0000                     | 0.1245                      | 0.0086             | 0.2034             | -0.0215            |
| 2X               | 1.0850                     | 1.4860                         | -4.9756                      | -1.0850                     | -1.4860                     | 4.9756                      | 0.0070             | 0.1741             | -0.0217            |
| 2XY              | -1.1120                    | 1.1390                         | -4.0016                      | 1.1120                      | -1.1390                     | 4.0016                      | 0.0065             | 0.1706             | -0.0202            |
| 2 Y              | 1.0890                     | 1.2148                         | -0.5996                      | -1.0890                     | -1.2148                     | 0.5996                      |                    | 0.1710             | 0.0037             |
| 7x               | 0.0000                     | 0.0000                         | -0.1997                      | -0.0000                     | -0.0000                     | 0.1997                      |                    | 0.0699             |                    |
| 7XY              | 0.0000                     | 0.0000                         | -0.1997                      | -0.0000                     | 0.0000                      | 0.1997                      |                    |                    | -0.0143            |
| 7 Y              | 0.0000                     | 0.0978                         | -0.1997                      | -0.0000                     | -0.0978                     | 0.1997                      |                    | 0.0670             | 0.0016             |
| 8X               | 0.0000                     | 0.1820                         | -0.6945                      | 0.0000                      | -0.1820                     | 0.6945                      |                    |                    |                    |
| 8XY              | 0.0000                     | 0.0000                         | -0.1945                      | 0.0000                      | -0.0000                     | 0.1945                      | -0.0003            |                    |                    |
| 84               | 0.0000                     | 0.1093                         | -0.1945                      | 0.0000                      | -0.1093                     | 0.1945                      |                    | 0.0504             | 0.0006             |
| 9X               | 0.0000                     | 0.0000                         | -0.2563                      | 6.0397                      | 6.6814                      | -41.8292                    |                    | 0.0000             | 0.0000             |
| 9XY              | 0.0000                     | 0.0000                         | -0.2563                      | -6.1593                     |                             | -38.4679                    |                    | 0.0000             | 0.0000             |
| 9Y               | 0.0000                     | 0.1893                         | -0.2563                      | 2.7812                      | 2.2530                      | 14.1396                     |                    | 0.0000             | 0.0000             |
| 15X              | 0.0000                     | 0.7990                         | -1.2875                      | 0.0000                      | -0.7990                     | 1.2875                      | -0.0018            | 0.2041             | -0.0994            |

| 16X  | 0.0000  | 0.9060  | -1.9338 | 0.0000  | -0.9060 | 1.9338 -0.0002 0.1718 -0.0775 |
|------|---------|---------|---------|---------|---------|-------------------------------|
| 17X  | 0.0000  | 0.9060  | -1.9862 | 0.0000  | -0.9060 | 1.9862 -0.0068 0.1053 -0.3002 |
| 18X  | 0.0000  | 0.9060  | -1.9430 | 0.0000  | -0.9060 | 1.9430 -0.0055 0.0679 -0.0581 |
| 19X  | 0.0000  | 0.0169  | -0.0157 | -0.0000 | -0.0169 | 0.0157 -0.2805 0.1443 0.0115  |
| 19XY | 0.0000  | 0.0169  | -0.0157 | 0.0000  | -0.0169 | 0.0157 0.2973 0.1415 0.0126   |
| 19Y  | 0.0000  | 0.0000  | -0.0157 | 0.0000  | -0.0000 | 0.0157 0.2900 0.0965 -0.0288  |
| 38   | 0.0000  | 0.0659  | -0.0958 | 0.0000  | -0.0659 | 0.0958 0.0090 0.1524 0.0022   |
| 4S   | 0.0000  | 0.2383  | -0.6277 | -0.0000 | -0.2383 | 0.6277 0.0072 0.1313 0.0021   |
| 5S   | 0.3080  | -0.2315 | -0.4026 | -0.3080 | 0.2315  | 0.4026 0.0065 0.1119 0.0020   |
| 6S   | 0.0000  | 0.3118  | -0.7050 | 0.0000  | -0.3118 | 0.7050 0.0040 0.0891 0.0013   |
| 10S  | 0.0000  | 0.3552  | -0.8566 | 0.0000  | -0.3552 | 0.8566 0.0002 0.0381 0.0003   |
| 11S  | 0.0000  | 0.1292  | -0.2097 | 0.0000  | -0.1292 | 0.2097 0.0010 0.0269 0.0009   |
| 12S  | 0.0000  | 0.4767  | -1.1340 | 0.0000  | -0.4767 | 1.1340 0.0001 0.0193 0.0008   |
| 13S  | 0.0000  | 0.1913  | -0.3076 | -0.0000 | -0.1913 | 0.3076 0.0000 0.0132 0.0008   |
| 14S  | 0.0000  | 0.9711  | -2.2552 | -0.0000 | -0.9711 | 2.2552 -0.0002 0.0096 0.0004  |
| 3X   | 0.0000  | 0.0000  | -0.0958 | 0.0000  | -0.0000 | 0.0958 0.0057 0.1524 -0.0212  |
| 3XY  | 0.0000  | 0.0000  | -0.0958 | 0.0000  | -0.0000 | 0.0958 0.0054 0.1489 -0.0197  |
| 3Y   | 0.0000  | 0.0659  | -0.0958 | 0.0000  | -0.0659 | 0.0958 0.0088 0.1491 0.0037   |
| 4 X  | 0.0000  | 0.1850  | -0.6277 | -0.0000 | -0.1850 | 0.6277 0.0048 0.1320 -0.0204  |
| 4XY  | 0.0000  | 0.0000  | -0.1187 | 0.0000  | 0.0000  | 0.1187 0.0038 0.1286 -0.0190  |
| 4 Y  | 0.0000  | 0.0533  | -0.1187 | 0.0000  | -0.0533 | 0.1187 0.0079 0.1279 0.0035   |
| 5X   | -0.3330 | -0.3740 | -4.5006 | 0.3330  | 0.3740  | 4.5006 0.0033 0.1116 -0.0193  |
| 5XY  | 0.3350  | -0.3620 | -4.1236 | -0.3350 | 0.3620  | 4.1236 0.0030 0.1084 -0.0180  |
| 5Y   | -0.3100 | -0.2245 | -0.0986 | 0.3100  | 0.2245  | 0.0986 0.0063 0.1086 0.0033   |
| 6X   | 0.0000  | 0.2040  | -0.7050 | 0.0000  | -0.2040 | 0.7050 0.0035 0.0898 -0.0175  |
| 6XY  | 0.0000  | 0.0000  | -0.1450 | 0.0000  | 0.0000  | 0.1450 0.0002 0.0866 -0.0163  |
| 6Y   | 0.0000  | 0.1078  | -0.1450 | 0.0000  | -0.1078 | 0.1450 0.0059 0.0860 0.0026   |
| 10X  | 0.0000  | 0.2380  | -0.8566 | 0.0000  | -0.2380 | 0.8566 0.0006 0.0392 -0.0130  |
| 10XY | 0.0000  | 0.0000  | -0.2016 | 0.0000  | 0.0000  | 0.2016 -0.0046 0.0350 -0.0118 |
| 10Y  | 0.0000  | 0.1172  | -0.2016 | 0.0000  | -0.1172 | 0.2016 0.0031 0.0340 0.0016   |
| 11X  | 0.0000  | 0.0000  | -0.2097 | 0.0000  | 0.0000  | 0.2097 -0.0030 0.0276 -0.0123 |
| 11XY | 0.0000  | 0.0000  | -0.2097 | 0.0000  | 0.0000  | 0.2097 -0.0043 0.0222 -0.0110 |
| 11Y  | 0.0000  | 0.1292  | -0.2097 | 0.0000  | -0.1292 | 0.2097 0.0011 0.0217 0.0024   |
| 12X  | 0.0000  | 0.3320  | -1.1340 | 0.0000  | -0.3320 | 1.1340 -0.0044 0.0193 -0.0110 |
| 12XY | 0.0000  | 0.0000  | -0.2200 | 0.0000  | 0.0000  | 0.2200 -0.0058 0.0131 -0.0094 |
| 12Y  | 0.0000  | 0.1447  | -0.2200 | 0.0000  | -0.1447 | 0.2200 0.0011 0.0128 0.0025   |
| 13X  | 0.0000  | 0.0000  | -0.3076 | -0.0000 | 0.0000  | 0.3076 -0.0052 0.0143 -0.0092 |
| 13XY | 0.0000  | 0.0000  | -0.3076 | -0.0000 | 0.0000  | 0.3076 -0.0077 0.0070 -0.0075 |
| 13Y  | 0.0000  | 0.1913  | -0.3076 | -0.0000 | -0.1913 | 0.3076 0.0006 0.0063 0.0025   |
| 14X  | 0.0000  | 0.6090  | -2.2552 | -0.0000 | -0.6090 | 2.2552 -0.0080 0.0093 -0.0075 |
| 14XY | 0.0000  | 0.0000  | -0.5822 | -0.0000 | -0.0000 | 0.5822 -0.0080 0.0012 -0.0055 |
| 14Y  | 0.0000  | 0.3621  | -0.5822 | -0.0000 | -0.3621 | 0.5822 0.0002 0.0013 0.0022   |

Crossing Diagonal Check for Load Case "NESC Heavy" (RLOUT controls):

| Comp.<br>Member | Tens.<br>Member | Connect<br>Leg for |        |                           | •     |       |       | _     |       |       | <br>           |                       |       | Alternat<br>nsupport |        | •              |
|-----------------|-----------------|--------------------|--------|---------------------------|-------|-------|-------|-------|-------|-------|----------------|-----------------------|-------|----------------------|--------|----------------|
| Label           | Label           | Comp.<br>Member    | Member | Tens.<br>Member<br>(kips) | Cap.  | RLX   | RLY   | RLZ   | L/R   | KL/R  | Curve  <br>No. | L/R<br>Cap.<br>(kips) | RLOUT | L/R                  | KL/R   | Curve  <br>No. |
| XBrace5X        | XBrace5XY       | Short only         | -0.21  | -0.49                     | 30.54 | 0.750 | 0.500 | 0.500 | 81.77 | 91.33 | 2              | 24.76                 | 1.000 | 106.12               | 113.06 | 3              |
| XBrace5XY       | XBrace5X        | Short only         | -0.49  | -0.21                     | 30.54 | 0.750 | 0.500 | 0.500 | 81.77 | 91.33 | 2              | 24.76                 | 1.000 | 106.12               | 113.06 | 3              |
| XBrace7P        | XBrace7Y        | Short only         | -1.24  | -0.99                     | 30.54 | 0.750 | 0.500 | 0.500 | 81.77 | 91.33 | 2              | 24.76                 | 1.000 | 106.12               | 113.06 | 3              |
| XBrace7X        | XBrace7XY       | Short only         | -0.02  | -0.29                     | 30.54 | 0.750 | 0.500 | 0.500 | 81.77 | 91.33 | 2              | 24.76                 | 1.000 | 106.12               | 113.06 | 3              |
| XBrace7XY       | XBrace7X        | Short only         | -0.29  | -0.02                     | 30.54 | 0.750 | 0.500 | 0.500 | 81.77 | 91.33 | 2              | 24.76                 | 1.000 | 106.12               | 113.06 | 3              |
| XBrace7Y        | XBrace7P        | Short only         | -0.99  | -1.24                     | 30.54 | 0.750 | 0.500 | 0.500 | 81.77 | 91.33 | 2              | 24.76                 | 1.000 | 106.12               | 113.06 | 3              |
| XBrace9X        | XBrace9XY       | Long only          | -0.04  | -0.47                     | 28.26 | 0.500 | 0.750 | 0.500 | 91.51 | 98.63 | 2              | 22.63                 | 1.000 | 122.01               | 121.24 | 6              |
| XBrace9XY       | XBrace9X        | Long only          | -0.47  | -0.04                     | 28.26 | 0.500 | 0.750 | 0.500 | 91.51 | 98.63 | 2              | 22.63                 | 1.000 | 122.01               | 121.24 | 6              |

| XBrace11  | P XBrace11Y Long only    | -1.01 | -0.65 | 28.26 0.500 | 0.750 | 0.500 | 91.51  | 98.63  | 2 | 22.63 1.000 | 122.01 | 121.24 | 6 |
|-----------|--------------------------|-------|-------|-------------|-------|-------|--------|--------|---|-------------|--------|--------|---|
| XBrace11X | YY XBrace11X Long only   | -0.35 | 0.06  | 28.26 0.500 | 0.750 | 0.500 | 91.51  | 98.63  | 2 | 22.63 1.000 | 122.01 | 121.24 | 6 |
| XBrace11  | Y XBrace11P Long only    | -0.65 | -1.01 | 28.26 0.500 | 0.750 | 0.500 | 91.51  | 98.63  | 2 | 22.63 1.000 | 122.01 | 121.24 | 6 |
| XBrace13  | 3P XBrace13Y Short only  | -6.08 | -5.58 | 31.38 0.750 | 0.500 | 0.500 | 71.32  | 83.49  | 2 | 26.66 1.000 | 91.07  | 105.54 | 3 |
| XBrace13  | 3Y XBrace13P Short only  | -5.58 | -6.08 | 31.38 0.750 | 0.500 | 0.500 | 71.32  | 83.49  | 2 | 26.66 1.000 | 91.07  | 105.54 | 3 |
| XBrace15  | P XBrace15Y Short only   | -3.59 | -2.10 | 14.68 0.791 | 0.582 | 0.582 | 140.10 | 135.36 | 5 | 13.48 1.000 | 154.56 | 141.25 | 6 |
| XBrace15  | Y XBrace15P Short only   | -2.10 | -3.59 | 14.68 0.791 | 0.582 | 0.582 | 140.10 | 135.36 | 5 | 13.48 1.000 | 154.56 | 141.25 | 6 |
| XBrace16  | X XBrace16XY Short only  | -0.89 | -0.86 | 10.76 0.789 | 0.578 | 0.578 | 169.94 | 158.09 | 5 | 10.21 1.000 | 188.77 | 162.29 | 6 |
| XBrace16X | Y XBrace16X Short only   | -0.86 | -0.89 | 10.76 0.789 | 0.578 | 0.578 | 169.94 | 158.09 | 5 | 10.21 1.000 | 188.77 | 162.29 | 6 |
| XBrace19  | P XBrace19Y Short only   | -1.35 | -0.63 | 5.61 0.779  | 0.559 | 0.559 | 190.39 | 190.39 | 4 | 4.30 1.000  | 217.49 | 217.49 | 4 |
| XBrace19  | Y XBrace19P Short only   | -0.63 | -1.35 | 5.61 0.779  | 0.559 | 0.559 | 190.39 | 190.39 | 4 | 4.30 1.000  | 217.49 | 217.49 | 4 |
| XBrace21  | .X XBrace21XY Short only | -0.49 | -0.36 | 9.19 0.772  | 0.544 | 0.544 | 167.61 | 167.61 | 4 | 6.72 1.000  | 196.03 | 196.03 | 4 |
| XBrace21X | XY XBrace21X Short only  | -0.36 | -0.49 | 9.19 0.772  | 0.544 | 0.544 | 167.61 | 167.61 | 4 | 6.72 1.000  | 196.03 | 196.03 | 4 |
| XBrace22  | P XBrace22X Short only   | -0.12 | -0.26 | 14.79 0.771 | 0.543 | 0.543 | 166.95 | 166.95 | 4 | 10.76 1.000 | 195.71 | 195.71 | 4 |
| XBrace22  | X XBrace22P Short only   | -0.26 | -0.12 | 14.79 0.771 | 0.543 | 0.543 | 166.95 | 166.95 | 4 | 10.76 1.000 | 195.71 | 195.71 | 4 |
| XBrace23  | 3P XBrace23Y Short only  | -0.94 | -0.27 | 14.79 0.771 | 0.543 | 0.543 | 166.95 | 166.95 | 4 | 10.76 1.000 | 195.71 | 195.71 | 4 |
| XBrace23  | 3Y XBrace23P Short only  | -0.27 | -0.94 | 14.79 0.771 | 0.543 | 0.543 | 166.95 | 166.95 | 4 | 10.76 1.000 | 195.71 | 195.71 | 4 |
|           |                          |       |       |             |       |       |        |        |   |             |        |        |   |

# Summary of Clamp Capacities and Usages for Load Case "NESC Heavy":

| Clamp<br>Label                                                                                                                                                                                                                                                                                                  | Force                                                                                                                                                                                                                                            | Input<br>Holding<br>Capacity                                                                                                                                                              | Factored<br>Holding<br>Capacity                                                                                                                                                           | Usage                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                 | (kips)                                                                                                                                                                                                                                           | (kips)                                                                                                                                                                                    | (kips)                                                                                                                                                                                    | 용                                                                                                                                                                                                     |
| Clamp1 Clamp2 Clamp3 Clamp4 Clamp5 Clamp6 Clamp7 Clamp8 Clamp10 Clamp11 Clamp11 Clamp12 Clamp13 Clamp14 Clamp15 Clamp14 Clamp15 Clamp16 Clamp16 Clamp17 Clamp16 Clamp17 Clamp21 Clamp20 Clamp20 Clamp20 Clamp22 Clamp22 Clamp22 Clamp22 Clamp23 Clamp24 Clamp25 Clamp26 Clamp27 Clamp27 Clamp27 Clamp28 Clamp27 | 1.543<br>1.515<br>2.146<br>2.135<br>2.135<br>2.196<br>2.183<br>2.160<br>2.144<br>2.451<br>0.671<br>0.773<br>0.927<br>1.230<br>2.455<br>0.654<br>0.734<br>0.718<br>0.889<br>1.182<br>2.336<br>0.557<br>4.528<br>1.738<br>4.307<br>0.4153<br>0.130 | 50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00 | 50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00 | 3.09<br>3.03<br>4.29<br>4.37<br>4.32<br>4.29<br>4.90<br>1.34<br>1.51<br>1.85<br>2.46<br>4.91<br>10.61<br>1.31<br>1.47<br>1.47<br>1.44<br>1.78<br>2.36<br>4.67<br>1.11<br>9.06<br>3.48<br>8.61<br>0.26 |
| Clamp30<br>Clamp31<br>Clamp32                                                                                                                                                                                                                                                                                   | 0.181<br>0.223<br>0.233                                                                                                                                                                                                                          | 50.00<br>50.00<br>50.00                                                                                                                                                                   | 50.00<br>50.00<br>50.00                                                                                                                                                                   | 0.36<br>0.45<br>0.47                                                                                                                                                                                  |

| Clamp33<br>Clamp34<br>Clamp35<br>Clamp36<br>Clamp37<br>Clamp38<br>Clamp40<br>Clamp44 | 0.686<br>0.119<br>0.145<br>0.194<br>0.202<br>0.220<br>0.582<br>0.096 | 50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00 | 50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00 | 0.53<br>1.37<br>0.24<br>0.29<br>0.39<br>0.40<br>0.44<br>1.16<br>0.19 |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Clamp44                                                                              |                                                                      | 50.00                                                                | 50.00                                                                | 0.23                                                                 |
|                                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |

Equilibrium Joint Positions and Rotations for Load Case "NESC Extreme":

| Joint<br>Label | X-Displ<br>(ft)     | Y-Displ<br>(ft) | Z-Displ<br>(ft) | X-Rot<br>(deg)    | Y-Rot<br>(deg) | Z-Rot<br>(deg) | X-Pos<br>(ft)    | Y-Pos<br>(ft)  | Z-Pos<br>(ft) |
|----------------|---------------------|-----------------|-----------------|-------------------|----------------|----------------|------------------|----------------|---------------|
| 1P             | 0.0182              | 0.4615          | 0.02242         | -0.7994           | 0.0316         | 0.1165         | 0.0182           | -1.539         | 78.27         |
| 2P             | 0.01516             | 0.3957          |                 | -0.8257           |                | 0.1089         |                  | -1.604         |               |
| 7P             | 0.005087            | 0.156           |                 | -0.5441           | -0.0130        |                |                  | -1.844         |               |
| 8P             | 0.003912            | 0.1189          | 0.01155         | -0.4256           | 0.0571         | 0.0955         | 2.004            | -1.881         | 50.01         |
| 9P             | 0                   | 0               | 0               | 0.0000            | 0.0000         | 0.0000         | 10               | -10            | 0             |
| 15P            | 0.04285             | 0.4626          | 0.1897          | -0.7915           | 0.0340         | 0.1175         | 0.04285          | -13.54         | 78.44         |
| 16P            | 0.03203             | 0.3925          |                 | -0.7683           |                | 0.1198         | 0.03203          |                |               |
| 17P            | 0.03226             |                 | 0.002733        | 0.4611            |                | 0.1089         | 0.03226          |                |               |
| 18P            | 0.01901             | 0.1534          |                 | -0.6215           | 0.0241         |                | 0.01901          |                |               |
| 19P            | -0.27               | 0.2531          | -0.0527         | 0.0000            |                | 0.0000         | 1.73             |                | 64.45         |
| 1X             | 0.01005             |                 | -0.03341        |                   |                | 0.1164         | 0.01005          |                | 78.22         |
| 2X             | 0.007966            | 0.3952          |                 | -0.8266           |                | 0.1070         | 2.008            |                | 73.22         |
| 2XY<br>2Y      | 0.007097<br>0.01591 | 0.3875          | -0.03144        | -0.8238           |                | 0.1191         | -1.993<br>-1.984 | 2.387          |               |
| 7X             | -0.000407           |                 | -0.02362        |                   |                | 0.0876         | -1.964           |                | 54.23         |
| 7XY            | -0.001596           |                 | -0.01987        |                   | -0.0195        |                | -2.002           |                | 54.23         |
| 7Y             | 0.006178            | 0.1495          |                 | -0.5413           |                | 0.0932         |                  | -1.851         |               |
| 8X             | -0.002407           |                 | -0.01817        |                   |                |                | 1.998            |                | 49.98         |
| 8XY            | -0.002087           |                 | -0.01686        |                   |                | 0.0723         | -2.002           |                | 49.98         |
| 84             | 0.003647            | 0.1126          | 0.01306         | -0.4215           | -0.0065        | 0.0714         | -1.996           | -1.887         | 50.01         |
| 9X             | 0                   | 0               | 0               | 0.0000            | 0.0000         | 0.0000         | 10               | 10             | 0             |
| 9XY            | 0                   | 0               | 0               | 0.0000            |                | 0.0000         | -10              | 10             | 0             |
| 9Y             | 0                   | 0               | 0               | 0.0000            |                | 0.0000         | -10              | -10            | 0             |
| 15X            | -0.0145             | 0.4604          |                 | -0.8060           | 0.0285         |                | -0.0145          | 14.46          | 78.05         |
| 16X            | -0.008859           | 0.3901          |                 | -0.8254           |                | 0.1190         | -0.008859        | 10.39          | 73.1          |
| 17X            | -0.02011            | 0.2418          |                 | -2.0298           |                | 0.1087         | -0.02011         | 14.24          |               |
| 18X<br>19X     | -0.01459<br>-0.2898 | 0.1519          | 0.04283         | -0.6612<br>0.0000 |                | 0.0999         | -0.01459<br>1.71 | 10.15<br>-3.45 |               |
| 19XY           | 0.3192              | 0.2941          | 0.04283         | 0.0000            |                | 0.0000         |                  | -3.456         |               |
| 19Y            | 0.2722              |                 | -0.05055        | 0.0000            |                | 0.0000         | -1.728           |                | 64.45         |
| 3s             | 0.01354             | 0.3449          |                 | -0.8126           |                | 0.1067         |                  | -1.655         |               |
| 4S             | 0.01055             | 0.2967          |                 | -0.7809           |                | 0.1051         |                  | -1.703         |               |
| 5S             | 0.009807            | 0.251           |                 | -0.6739           |                | 0.1032         |                  | -1.749         |               |
| 6S             | 0.004569            | 0.1999          | 0.01732         | -0.6543           | 0.0437         | 0.0968         | 2.005            | -1.8           | 58.52         |
| 10S            | -0.001728           | 0.08647         | 0.01147         | -0.2584           | 0.0415         | 0.0981         | 2.958            | -2.874         | 44.01         |
| 11S            | 0.001252            | 0.06115         |                 | -0.1933           |                | 0.0865         |                  | -3.939         |               |
| 12S            | -0.000259           |                 | 0.009982        |                   |                | 0.0613         |                  | -4.996         |               |
| 13S            | -0.0001862          |                 | 0.008302        |                   |                | 0.0465         |                  | -5.997         |               |
| 14S            | -2.739e-005         |                 | 0.005676        |                   |                | 0.0302         |                  | -7.179         |               |
| 3X<br>3XY      | 0.005973            |                 | -0.03257        |                   |                | 0.1051         | 2.006            |                | 69.72         |
| 3X1<br>3Y      | 0.005909<br>0.01346 | 0.3369          | -0.03041        | -0.8113           |                | 0.1147 0.1139  | -1.994           | -1.663         | 69.72         |
| 4X             | 0.005369            |                 | -0.03107        |                   | 0.0212         |                | 2.005            |                | 66.22         |
| 4XY            | 0.0033092           |                 | -0.02886        |                   |                | 0.11024        | -1.997           |                | 66.22         |
| 4Y             | 0.01266             | 0.2889          |                 | -0.7759           |                | 0.1093         |                  | -1.711         |               |
| 5X             | 0.002509            | 0.2506          |                 | -0.7690           |                | 0.1004         | 2.003            |                | 62.72         |
| 5XY            | 0.002437            |                 | -0.02684        |                   |                | 0.1066         | -1.998           |                | 62.72         |
| 5Y             | 0.009778            | 0.2436          | 0.02177         | -0.6672           | 0.0256         | 0.1049         | -1.99            | -1.756         | 62.77         |
| 6X             | 0.003766            |                 | -0.02558        |                   |                | 0.0944         | 2.004            |                | 58.47         |
| 6XY            | -0.002629           | 0.1929          | -0.02368        | -0.6228           | 0.0356         | 0.1004         | -2.003           | 2.193          | 58.48         |

| 6Y<br>10X | 0.01069   | 0.193    | 0.01916  | -0.6484<br>-0.2525 | 0.0156  |        | -1.989 -1.807 58 | –    |
|-----------|-----------|----------|----------|--------------------|---------|--------|------------------|------|
| 10X       | -0.009046 | 0.00070  | -0.0177  | -0.2546            | 0.0305  |        | -2.969 3.038 43  |      |
| 10Y       | 0.007097  | 0.07789  | 0.01344  | -0.2557            | -0.0006 | 0.0438 | -2.953 -2.882 44 | 1.01 |
| 11X       | -0.005586 | 0.0615   | -0.01742 | -0.1993            | 0.0297  | 0.0827 | 3.994 4.062 37   | 7.48 |
| 11XY      | -0.007318 | 0.0504   | -0.01594 | -0.1971            | -0.0093 | 0.0286 | -4.007 4.05 37   | 7.48 |
| 11Y       | 0.002545  | 0.05029  | 0.01375  | -0.1959            | 0.0281  | 0.0289 | -3.997 -3.95 37  | 7.51 |
| 12X       | -0.007096 | 0.04339  | -0.01584 | -0.1351            | -0.0179 | 0.0588 | 5.033 5.083 30   | ).98 |
| 12XY      | -0.009694 | 0.0307   | -0.01404 | -0.1338            | 0.0342  | 0.0256 | -5.05 5.071 30   | ).99 |
| 12Y       | 0.002879  | 0.03088  | 0.01243  | -0.1365            | -0.0080 | 0.0248 | -5.037 -5.009 31 | 1.01 |
| 13X       | -0.008348 | 0.03143  | -0.01346 | -0.0923            | 0.0231  | 0.0468 | 6.019 6.059 24   | 1.82 |
| 13XY      | -0.01225  | 0.01728  | -0.01135 | -0.1004            | 0.0195  | 0.0182 | -6.039 6.044 24  | 1.82 |
| 13Y       | 0.002148  | 0.01695  | 0.0107   | -0.1004            | 0.0053  | 0.0163 | -6.025 -6.01 24  | 1.84 |
| 14X       | -0.01261  | 0.02058  | -0.01109 | -0.0851            | -0.0067 | 0.0261 | 7.187 7.221 17   | 7.49 |
| 14XY      | -0.01263  | 0.005473 | -0.00851 | -0.0597            | -0.0157 | 0.0064 | -7.213 7.205 17  | 7.49 |
| 14Y       | 0.001608  | 0.005777 | 0.008295 | -0.0553            | -0.0001 | 0.0097 | -7.198 -7.194 17 | 7.51 |

Joint Support Reactions for Load Case "NESC Extreme":

| Joint | х      | х     | Y      | Y     | H-Shear | Z      | Comp. | Uplift | Result. | Result. | Х      | X-M.  | Y      | Y-M.  | H-Bend-M | Z      | Z-M.  | Max.  |
|-------|--------|-------|--------|-------|---------|--------|-------|--------|---------|---------|--------|-------|--------|-------|----------|--------|-------|-------|
| Label | Force  | Usage | Force  | Usage | Usage   | Force  | Usage | Usage  | Force   | Usage   | Moment | Usage | Moment | Usage | Usage    | Moment | Usage | Usage |
|       | (kips) | 8     | (kips) | 용     | 8       | (kips) | 8     | 용      | (kips)  | 8       | (ft-k) | %     | (ft-k) | 용     | 8        | (ft-k) | 용     | %     |
| 9P    | 11.50  | 0.0   | -12.94 | 0.0   | 0.0     | 57.37  | 0.0   | 0.0    | 59.93   | 0.0     | 0.44   | 0.0   | -0.0   | 0.0   | 0.0      | 0.02   | 0.0   | 0.0   |
| 9x    | -9.88  | 0.0   | -11.02 | 0.0   | 0.0     | -67.62 | 0.0   | 0.0    | 69.22   | 0.0     | 0.34   | 0.0   | 0.5    | 0.0   | 0.0      | 0.08   | 0.0   | 0.0   |
| 9XY   | 9.95   | 0.0   | -9.34  | 0.0   | 0.0     | -62.43 | 0.0   | 0.0    | 63.90   | 0.0     | -0.07  | 0.0   | 0.3    | 0.0   | 0.0      | 0.06   | 0.0   | 0.0   |
| 9 Y   | -11.69 | 0.0   | -9.23  | 0.0   | 0.0     | 55.75  | 0.0   | 0.0    | 57.71   | 0.0     | -0.05  | 0.0   | -0.0   | 0.0   | 0.0      | 0.01   | 0.0   | 0.0   |

Joint Displacements, Loads and Member Forces on Joints for Load Case "NESC Extreme":

| Joint X<br>Label | Load    | Y External Z<br>Load | Load    | Force    | Force   | Force    | X<br>Disp. | Y<br>Disp. | Z<br>Disp. |
|------------------|---------|----------------------|---------|----------|---------|----------|------------|------------|------------|
|                  | (kips)  | (kips)               | (kips)  | (kips)   | (kips)  | (kips)   | (ft)       | (ft)<br>   | (ft)       |
| 1P               | 0.0000  | 0.0961               | -0.0833 | 0.0000   | -0.0961 | 0.0833   | 0.0182     | 0.4615     | 0.0224     |
| 2P               | -3.7290 | 5.1841               | 4.6917  | 3.7290   | -5.1841 | -4.6917  | 0.0152     | 0.3957     | 0.0216     |
| 7P               | 0.0000  | 0.0961               | -0.0833 | -0.0000  | -0.0961 | 0.0833   | 0.0051     | 0.1560     | 0.0141     |
| 8P               | 0.0000  | 0.9541               | -0.3976 | 0.0000   | -0.9541 | 0.3976   | 0.0039     | 0.1189     | 0.0115     |
| 9P               | 0.0000  | 0.2760               | -0.1782 | -11.5049 | 12.6681 | 57.5494  | 0.0000     | 0.0000     | 0.0000     |
| 15P              | 0.0060  | 0.6651               | -0.3323 | -0.0060  | -0.6651 | 0.3323   | 0.0428     | 0.4626     | 0.1897     |
| 16P              | 0.0350  | 0.9631               | -0.7153 | -0.0350  | -0.9631 | 0.7153   | 0.0320     | 0.3925     | 0.1323     |
| 17P              | 0.0350  | 0.9631               | -0.7153 | -0.0350  | -0.9631 | 0.7153   | 0.0323     | 0.2479     | 0.0027     |
| 18P              | 0.0350  | 0.9631               | -0.7153 | -0.0350  | -0.9631 | 0.7153   | 0.0190     | 0.1534     | 0.0975     |
| 19P              | 0.0000  | 0.0961               | -0.0833 | -0.0000  | -0.0961 | 0.0833   | -0.2700    | 0.2531     | -0.0527    |
| 1X               | 0.0000  | 0.0961               | -0.0833 | 0.0000   | -0.0961 | 0.0833   | 0.0100     | 0.4612     | -0.0334    |
| 2X               | 3.7320  | 5.0921               | -7.4933 | -3.7320  | -5.0921 | 7.4933   | 0.0080     | 0.3952     | -0.0336    |
| 2XY              | -3.8050 | 4.0571               | -7.2223 | 3.8050   | -4.0571 | 7.2223   | 0.0071     | 0.3870     | -0.0314    |
| 2Y               | 3.8020  | 4.1491               | 4.9417  | -3.8020  | -4.1491 | -4.9417  | 0.0159     | 0.3875     | 0.0238     |
| 7X               | 0.0000  | 0.0961               | -0.0833 | 0.0000   | -0.0961 | 0.0833   | -0.0004    |            |            |
| 7XY              | 0.0000  | 0.0961               | -0.0833 | 0.0000   | -0.0961 | 0.0833   | -0.0016    | 0.1492     | -0.0199    |
| 7 Y              | 0.0000  | 0.0961               | -0.0833 | -0.0000  | -0.0961 | 0.0833   | 0.0062     |            | 0.0158     |
| 8X               | 0.0000  | 0.9541               | -0.3976 | 0.0000   | -0.9541 |          | -0.0024    |            |            |
| 8XY              | 0.0000  | 0.3721               | -0.2616 | 0.0000   | -0.3721 | 0.2616   | -0.0021    |            |            |
| 84               | 0.0000  | 0.3721               | -0.2616 | 0.0000   | -0.3721 | 0.2616   | 0.0036     |            | 0.0131     |
| 9X               | 0.0000  | 0.2760               | -0.1782 | 9.8805   | 10.7405 | -67.4458 |            |            | 0.0000     |
| 9XY              | 0.0000  | 0.2760               | -0.1782 | -9.9513  | 9.0602  |          | 0.0000     |            | 0.0000     |
| 9Y               | 0.0000  | 0.2760               | -0.1782 | 11.6877  | 8.9497  | 55.9296  | 0.0000     |            | 0.0000     |
| 15X              | 0.0000  | 0.6701               | -0.3323 | -0.0000  | -0.6701 | 0.3323   | -0.0145    | 0.4604     | -0.2028    |

| 16X  | 0.0000  | 0.9691  | -0.7153 | -0.0000 | -0.9691 | 0.7153 -0.0089 0.3901 -0.1475 |
|------|---------|---------|---------|---------|---------|-------------------------------|
| 17X  | 0.0000  | 0.9691  | -0.7153 | 0.0000  | -0.9691 | 0.7153 -0.0201 0.2418 -0.3660 |
| 18X  | 0.0000  | 0.9691  | -0.7153 | -0.0000 | -0.9691 | 0.7153 -0.0146 0.1519 -0.1073 |
| 19X  | 0.0000  | 0.0961  | -0.0833 | -0.0000 | -0.0961 | 0.0833 -0.2898 0.3002 0.0428  |
| 19XY | 0.0000  | 0.0961  | -0.0833 | 0.0000  | -0.0961 | 0.0833 0.3192 0.2941 0.0443   |
| 19Y  | 0.0000  | 0.0961  | -0.0833 | 0.0000  | -0.0961 | 0.0833 0.2722 0.2462 -0.0506  |
| 38   | 0.0000  | 0.0961  | -0.0833 | 0.0000  | -0.0961 | 0.0833 0.0135 0.3449 0.0215   |
| 4S   | 0.0000  | 0.6881  | -0.2213 | -0.0000 | -0.6881 | 0.2213 0.0105 0.2967 0.0209   |
| 5S   | 1.1500  | -1.0899 | 6.1127  | -1.1500 | 1.0899  | -6.1127 0.0098 0.2510 0.0198  |
| 6S   | 0.0000  | 0.7491  | -0.2353 | 0.0000  | -0.7491 | 0.2353 0.0046 0.1999 0.0173   |
| 10S  | 0.0000  | 1.0390  | -0.3562 | 0.0000  | -1.0390 | 0.3562 -0.0017 0.0865 0.0115  |
| 11S  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 0.0013 0.0611 0.0115   |
| 12S  | 0.0000  | 1.3400  | -0.4262 | 0.0000  | -1.3400 | 0.4262 -0.0003 0.0438 0.0100  |
| 13S  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 -0.0002 0.0305 0.0083  |
| 14S  | 0.0000  | 2.2230  | -0.6322 | 0.0000  | -2.2230 | 0.6322 -0.0000 0.0215 0.0057  |
| 3X   | 0.0000  | 0.0961  | -0.0833 | -0.0000 | -0.0961 | 0.0833 0.0060 0.3445 -0.0326  |
| 3XY  | 0.0000  | 0.0961  | -0.0833 | -0.0000 | -0.0961 | 0.0833 0.0059 0.3365 -0.0304  |
| 3Y   | 0.0000  | 0.0961  | -0.0833 | 0.0000  | -0.0961 | 0.0833 0.0135 0.3369 0.0237   |
| 4X   | 0.0000  | 0.6881  | -0.2213 | -0.0000 | -0.6881 | 0.2213 0.0054 0.2967 -0.0311  |
| 4XY  | 0.0000  | 0.0961  | -0.0833 | 0.0000  | -0.0961 | 0.0833 0.0031 0.2888 -0.0289  |
| 4 Y  | 0.0000  | 0.0961  | -0.0833 | 0.0000  | -0.0961 | 0.0833 0.0127 0.2889 0.0229   |
| 5X   | -1.1590 | -1.1959 | -8.4423 | 1.1590  | 1.1959  | 8.4423 0.0025 0.2506 -0.0291  |
| 5XY  | 1.1650  | -1.1699 | -0.9003 | -1.1650 | 1.1699  | 0.9003 0.0024 0.2432 -0.0268  |
| 5Y   | -1.1550 | -1.0649 | 6.1077  | 1.1550  | 1.0649  | -6.1077 0.0098 0.2436 0.0218  |
| 6X   | 0.0000  | 0.7491  | -0.2353 | 0.0000  | -0.7491 | 0.2353 0.0038 0.2000 -0.0256  |
| 6XY  | 0.0000  | 0.0961  | -0.0833 | 0.0000  | -0.0961 | 0.0833 -0.0026 0.1929 -0.0237 |
| 6Y   | 0.0000  | 0.0961  | -0.0833 | -0.0000 | -0.0961 | 0.0833 0.0107 0.1930 0.0192   |
| 10X  | 0.0000  | 1.0390  | -0.3562 | 0.0000  | -1.0390 | 0.3562 0.0004 0.0868 -0.0177  |
| 10XY | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 -0.0090 0.0778 -0.0164 |
| 10Y  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 0.0071 0.0779 0.0134   |
| 11X  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 -0.0056 0.0615 -0.0174 |
| 11XY | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 -0.0073 0.0504 -0.0159 |
| 11Y  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 0.0025 0.0503 0.0137   |
| 12X  | 0.0000  | 1.3400  | -0.4262 | 0.0000  | -1.3400 | 0.4262 -0.0071 0.0434 -0.0158 |
| 12XY | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 -0.0097 0.0307 -0.0140 |
| 12Y  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 0.0029 0.0309 0.0124   |
| 13X  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 -0.0083 0.0314 -0.0135 |
| 13XY | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 -0.0123 0.0173 -0.0114 |
| 13Y  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 0.0021 0.0169 0.0107   |
| 14X  | 0.0000  | 2.2230  | -0.6322 | 0.0000  | -2.2230 | 0.6322 -0.0126 0.0206 -0.0111 |
| 14XY | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 -0.0126 0.0055 -0.0085 |
| 14Y  | 0.0000  | 0.2760  | -0.1782 | 0.0000  | -0.2760 | 0.1782 0.0016 0.0058 0.0083   |

Crossing Diagonal Check for Load Case "NESC Extreme" (RLOUT controls):

| Comp.     | Tens.     | Connect    | Force  | Force     |        | <br> <br> |       |       |       |       |       | Alternate |       |          |        |       |  |
|-----------|-----------|------------|--------|-----------|--------|-----------|-------|-------|-------|-------|-------|-----------|-------|----------|--------|-------|--|
| Member    | Member    | Leg for    | In     | In        |        |           |       |       |       |       |       |           | U1    | nsupport | ted    |       |  |
| Label     | Label     | Comp.      | Comp.  | Tens.     | L/R    | RLX       | RLY   | RLZ   | L/R   | KL/R  | Curve | L/R       | RLOUT | L/R      | KL/R   | Curve |  |
|           |           | Member     | Member | Member    | Cap.   |           |       |       |       |       | No.   | Cap.      |       |          |        | No.   |  |
|           |           |            | (kips) | (kips)    | (kips) |           |       |       |       |       | I     | (kips)    |       |          |        | 1     |  |
| YBrace5Y  | YBrace5XV | Short only | -0 06  | <br>_1 19 | 30 54  | 0 750     | 0 500 | n 500 | 81.77 | 91 33 | 2.    | 24 76     | 1 000 | 106.12   | 113 06 | з     |  |
| XBrace5XY |           | Short only |        |           |        |           |       |       | 81.77 |       | 2     |           |       | 106.12   |        |       |  |
|           |           | Short only |        |           |        |           |       |       | 81.77 |       | 2     |           |       | 106.12   |        |       |  |
| XBrace7Y  | XBrace7P  | Short only | -0.90  | -1.90     | 30.54  | 0.750     | 0.500 | 0.500 | 81.77 | 91.33 | 2     | 24.76     | 1.000 | 106.12   | 113.06 | 3     |  |
| XBrace11P | XBrace11Y | Long only  | -1.54  | -0.04     | 28.26  | 0.500     | 0.750 | 0.500 | 91.51 | 98.63 | 2     | 22.63     | 1.000 | 122.01   | 121.24 | 6     |  |
| XBrace11Y | XBrace11P | Long only  | -0.04  | -1.54     | 28.26  | 0.500     | 0.750 | 0.500 | 91.51 | 98.63 | 2     | 22.63     | 1.000 | 122.01   | 121.24 | 6     |  |
| XBrace13P | XBrace13Y | Short only | -11.86 | -10.14    | 31.38  | 0.750     | 0.500 | 0.500 | 71.32 | 83.49 | 2     | 26.66     | 1.000 | 91.07    | 105.54 | 3     |  |
| XBrace13Y | XBrace13P | Short only | -10.14 | -11.86    | 31.38  | 0.750     | 0.500 | 0.500 | 71.32 | 83.49 | 2     | 26.66     | 1.000 | 91.07    | 105.54 | 3     |  |

| XBrace15P  | XBrace15Y Short only  | -7.05 | -3.02 | 14.68 0.791 | 0.582 | 0.582 | 140.10 | 135.36 | 5 | 13.48 | 1.000 | 154.56 | 141.25 | 6 |
|------------|-----------------------|-------|-------|-------------|-------|-------|--------|--------|---|-------|-------|--------|--------|---|
| XBrace15Y  | XBrace15P Short only  | -3.02 | -7.05 | 14.68 0.793 | 0.582 | 0.582 | 140.10 | 135.36 | 5 | 13.48 | 1.000 | 154.56 | 141.25 | 6 |
| XBrace16X  | XBrace16XY Short only | -3.12 | -1.87 | 10.76 0.789 | 0.578 | 0.578 | 169.94 | 158.09 | 5 | 10.21 | 1.000 | 188.77 | 162.29 | 6 |
| XBrace16XY | XBrace16X Short only  | -1.87 | -3.12 | 10.76 0.789 | 0.578 | 0.578 | 169.94 | 158.09 | 5 | 10.21 | 1.000 | 188.77 | 162.29 | 6 |
| XBrace19P  | XBrace19Y Short only  | -2.70 | -0.96 | 5.61 0.779  | 0.559 | 0.559 | 190.39 | 190.39 | 4 | 4.30  | 1.000 | 217.49 | 217.49 | 4 |
| XBrace19Y  | XBrace19P Short only  | -0.96 | -2.70 | 5.61 0.779  | 0.559 | 0.559 | 190.39 | 190.39 | 4 | 4.30  | 1.000 | 217.49 | 217.49 | 4 |
| XBrace21X  | XBrace21XY Short only | -0.68 | -1.30 | 9.19 0.772  | 0.544 | 0.544 | 167.61 | 167.61 | 4 | 6.72  | 1.000 | 196.03 | 196.03 | 4 |
| XBrace21XY | XBrace21X Short only  | -1.30 | -0.68 | 9.19 0.772  | 0.544 | 0.544 | 167.61 | 167.61 | 4 | 6.72  | 1.000 | 196.03 | 196.03 | 4 |
| XBrace23P  | XBrace23Y Short only  | -1.75 | -0.50 | 14.79 0.771 | 0.543 | 0.543 | 166.95 | 166.95 | 4 | 10.76 | 1.000 | 195.71 | 195.71 | 4 |
| XBrace23Y  | XBrace23P Short only  | -0.50 | -1.75 | 14.79 0.771 | 0.543 | 0.543 | 166.95 | 166.95 | 4 | 10.76 | 1.000 | 195.71 | 195.71 | 4 |

# Summary of Clamp Capacities and Usages for Load Case "NESC Extreme":

| Clamp<br>Label                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                       | Input Holding Capacity (kins)                                                                                                                                                                                                | Factored Holding Capacity (kins)                                                                                                                                                                                          | Usage                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                           | (KIPS)                                                                                                                                | (KIPS)                                                                                                                                                                                                                       | (KIPS)                                                                                                                                                                                                                    |                                                      |
| Clamp1 Clamp2 Clamp3 Clamp4 Clamp5 Clamp6 Clamp7 Clamp10 Clamp11 Clamp11 Clamp12 Clamp13 Clamp14 Clamp15 Clamp14 Clamp15 Clamp16 Clamp17 Clamp18 Clamp17 Clamp18 Clamp17 Clamp18 Clamp210 Clamp20 Clamp20 Clamp20 Clamp20 Clamp22 Clamp23 Clamp22 Clamp23 Clamp23 Clamp24 Clamp25 Clamp27 Clamp28 Clamp27 Clamp28 Clamp27 Clamp28 Clamp29 Clamp30 Clamp31 | (kips)  0.744 0.748 1.200 1.204 1.200 1.204 7.924 0.723 0.785 1.034 1.098 1.406 2.311 6.315 8.605 7.489 9.116 6.306 1.881 0.127 0.455 | Capacity (kips)  50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 | (kips)  50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 | *                                                    |
| Clamp32<br>Clamp33<br>Clamp34<br>Clamp35<br>Clamp36<br>Clamp37<br>Clamp38<br>Clamp39                                                                                                                                                                                                                                                                      | 0.329<br>0.329<br>0.329<br>0.127<br>0.127<br>0.455<br>0.329<br>0.329                                                                  | 50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00                                                                                                                                                                  | 50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00                                                                                                                                                               | 0.66<br>0.66<br>0.25<br>0.25<br>0.91<br>0.66<br>0.66 |

| Clamp40 | 0.329 | 50.00 | 50.00 | 0.66 |
|---------|-------|-------|-------|------|
| Clamp43 | 0.127 | 50.00 | 50.00 | 0.25 |
| Clamp44 | 0.127 | 50.00 | 50.00 | 0.25 |

\*\*\* Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress Printed capacities do not include the strength factor entered for each load case. The Group Summary reports on the member and load case that resulted in maximum usage which may not necessarily be the same as that which produces maximum force.

#### Group Summary (Compression Portion):

| Group                             | Group                  | _        | Angle               | Steel    | Max       | Usage | Max      | Comp.       | Comp.         | Comp.     | L/R      | Comp.    | Comp.    | RLX   | RLY   | RLZ    |
|-----------------------------------|------------------------|----------|---------------------|----------|-----------|-------|----------|-------------|---------------|-----------|----------|----------|----------|-------|-------|--------|
| L/R KL/R Le<br>Label<br>Comp. No. | Desc.<br>Of            |          | Size                | Strength | Usage     | Cont- | Use      | Control     | Force         | Control   | Capacity | Connect. | Connect. |       |       |        |
| Mamba.                            | Bolts                  |          |                     |          |           | rol   | In       | Member      |               | Load      |          | Shear    | Bearing  |       |       |        |
| Member                            | BOITS                  |          |                     |          |           |       | Comp.    |             |               | Case      |          | Capacity | Capacity |       |       |        |
| Comp.                             |                        |          |                     | (ksi)    | %         |       | 8        |             | (kips)        |           | (kips)   | (kips)   | (kips)   |       |       |        |
| (ft)                              |                        |          |                     | (KSI)    |           |       |          |             | _             |           |          |          |          |       |       |        |
|                                   |                        | <br>     |                     |          |           |       |          |             |               |           |          |          |          |       |       |        |
| Leg1                              | Leg1                   | SAU      | 2.5X2X0.1875        | 33.0     | 14.86     | Comp  | 14.86    | Leg1XY      | -1.5041       | NESC Hea  | 10.122   | 18.200   | 21.094   | 1.000 | 1.000 | 1.000  |
| 151.34 151.34<br>Leg2             | 1 5.385<br>Leg2        | 4<br>SAE | 2<br>4X4X0.3125     | 33.0     | 96.10     | Tens  | 92.23    | Leg6X       | -64.295N      | JESC Ext  | 69.710   | 109.200  | 105.469  | 1.000 | 1.000 | 1.000  |
| 64.48 64.48                       | _                      | 1        | 6                   | 33.0     | 30.10     | 10110 | J2 • 2 J | 109011      | 01.2301       | VEDC EMC  | 03.710   | 103.200  | 100.103  | 1.000 | 1.000 | 1.000  |
| Leg3                              | Leg3                   | SAE      | 4X4X0.4375          | 33.0     | 96.12     | Comp  | 96.12    | Leg9X       | -73.5861      | NESC Ext  | 76.554   | 0.000    | 0.000    | 1.000 | 1.000 | 1.000  |
| 101.88 101.88<br>Leg4             | 3 6.664<br>Leq4        | 1<br>SAE | 0<br>5x5x0.375      | 33.0     | 96.54     | Comp  | 96.54    | Leg13X      | -70.281N      | JESC Ext  | 78.526   | 72.800   | 168.750  | 0.500 | 0.500 | 0.500  |
| 108.74 108.74                     | _                      | 1        | 8                   | 00.0     | 30.01     | oomp  | 30.01    | 2091011     | , 0 . 2 0 2 1 | .200 20   | 70.020   | 72.000   | 100.700  | 0.000 | 0.000 | 0.000  |
| XBrace1                           | XBrace1                |          | 1.75X1.75X0.1875    | 33.0     | 55.44     | Tens  | 52.82    | XBrace2P    | -7.7081       | NESC Ext  | 14.594   | 18.200   | 21.094   | 0.750 | 0.500 | 0.500  |
| 92.98 99.73<br>XBrace2            | XBrace2                | 2<br>SAU | 2<br>3x2x0.25       | 33.0     | 44.57     | Tens  | 36.05    | XBrace10P   | -9.8421       | JESC Ext  | 28.258   | 27.300   | 42.187   | 0.500 | 0.750 | 0.500  |
| 91.51 98.63                       |                        | 2        | 3                   |          |           |       |          |             |               |           |          |          |          |       |       |        |
| XBrace3                           | XBrace3                | SAE      | 2.5X2.5X0.25        | 33.0     | 65.18     | Comp  | 65.18    | XBrace13P   | -11.8621      | NESC Ext  | 26.663   | 18.200   | 28.125   | 1.000 | 0.500 | 0.500  |
| 91.07 105.54<br>XBrace4           | XBrace4                | 3<br>SAE | 2 2X2X0.25          | 33.0     | 54.78     | Comp  | 54.78    | XBrace14Y   | -8.0451       | JESC Ext. | 14.684   | 18.200   | 28.125   | 0.791 | 0.582 | 0.582  |
| 140.10 135.36                     |                        | 5        | 2                   |          |           | -     |          |             |               |           |          |          |          |       |       |        |
| XBrace5                           | XBrace5                | SAE      | 2X2X0.1875          | 33.0     | 62.79     | Cross | 62.79    | XBrace19P   | -2.6971       | NESC Ext  | 4.296    | 9.100    | 10.547   | 1.000 | 0.559 | 0.559  |
| 217.49 217.49<br>XBrace6          | XBrace6                | 4<br>SAE | 1<br>2.5x2.5x0.1875 | 33.0     | 23.73     | Tens  | 20.85    | XBrace20XY  | -1.8971       | JESC Ext. | 9.190    | 9.100    | 10.547   | 0.772 | 0.544 | 0.544  |
| 167.61 167.61                     |                        | 4        | 1                   |          |           |       |          |             |               |           | **-**    | **-**    |          | ****  |       |        |
| XBrace7                           | XBrace7                | SAE      | 3X3X0.25            | 33.0     | 19.27     | Comp  | 19.27    | XBrace23P   | -1.7541       | NESC Ext  | 10.760   | 9.100    | 14.062   | 1.000 | 0.543 | 0.543  |
| 195.71 195.71<br>XBrace8          | XBrace8                | 4<br>SAU | 1<br>2X1.5X0.1875   | 33.0     | 39.51     | Tens  | 0.00     | XBrace25XY  | 0.000         |           | 0.945    | 18.200   | 21.094   | 0.577 | 0.788 | 0.577  |
| 531.06 433.27                     |                        | 5        | 2                   |          |           |       |          |             |               |           |          |          |          |       |       |        |
|                                   | rizontal 1             | SAE      | 2X2X0.1875          | 33.0     | 59.13     | Tens  | 41.92    | Horz1X      | -3.8141       | NESC Ext  | 13.406   | 9.100    | 10.547   | 1.000 | 1.000 | 1.000  |
| 121.83 121.83                     | 3 4.000<br>cizontal 2  | 4<br>SAU | 1<br>3x2.5x0.25     | 33 0     | 47.17     | Comp  | 47 17    | Horz7X      | -4.2921       | JESC Ext  | 11.214   | 9.100    | 14.062   | 1 000 | 0 500 | 0 500  |
| 182.86 182.86                     |                        | 4        | 1                   | 00.0     |           | oomp  | .,,      | 11012711    |               | .200 20   |          | 3.100    | 11.002   | 1.000 | 0.000 | 0.000  |
|                                   | Diagonal 1             | SAU      | 3.5X2.5X0.25        | 33.0     | 8.61      | Comp  | 8.61     | Diagonal 1X | -1.6851       | NESC Hea  | 19.584   | 27.300   | 42.187   | 1.000 | 0.500 | 0.500  |
| 145.07 145.07<br>Diag2 I          | / 13.153<br>Diagonal 2 | 4<br>Bar | 3<br>2x3/16         | 33 0     | 71 53     | Tens  | 0 00     | Diagonal 8Y | 0.000         |           | 11.400   | 9.100    | 10.547   | 1 000 | 1 000 | 1 000  |
| 29.70 52.27                       |                        | 2        | 1                   | 33.0     | • 00      | 10110 |          |             |               |           | 11.100   | 3.100    | 10.011   | 1.000 |       | _,,,,, |
|                                   | Diagonal 3             | Bar      | 2x1/4               | 33.0     | 31.12     | Tens  | 0.00     | Diagonal 6Y | 0.000         |           | 14.428   | 9.100    | 14.062   | 1.000 | 1.000 | 1.000  |
| 48.00 66.00<br>Arm1               | 4.000<br>Arm1          | 2<br>DAL | 1<br>2.5X2X0.1875   | 33.0     | 70.01     | Tens  | 0.00     | Arm2P       | 0.000         |           | 40.905   | 9.100    | 21.094   | 1.000 | 1.000 | 1.000  |
| 60.53 90.26                       |                        | 3        | 1                   | 33.0     | . 0 • 0 1 | 10110 | 0.00     | 11111121    | 0.000         |           | 10.505   | 3.100    | 21.031   | 1.000 | 1.000 | 1.000  |
| Arm2                              | Arm2                   | SAE      | 2.5X2.5X0.25        | 33.0     | 24.71     | Comp  | 24.71    | Arm4Y       | -2.2481       | NESC Hea  | 25.851   | 9.100    | 14.062   | 1.000 | 1.000 | 1.000  |

| 97.76 108.88 4.0   | 00      | 3    | 1                |                |                 |            |                 |           |           |                               |
|--------------------|---------|------|------------------|----------------|-----------------|------------|-----------------|-----------|-----------|-------------------------------|
| Arm3               | Arm3    | SAU  | 3.5x2.5x0.25     | 33.0 30.89     | Comp 30.89      | Arm5P      | -5.623NESC Hea  | 24.070    | 18.200    | 28.125 1.000 0.500 0.500      |
| 134.18 130.84 12.3 | 166     | 5    | 2 A potentially  | damaging momen | t exists in the | e followin | g members (make | sure your | system is | well triangulated to minimize |
| moments): Arm5P A: | rm5X Ar | m5XY | Arm5Y ??         |                |                 |            |                 |           |           |                               |
| Inner1 I           | nner1   | SAE  | 1.75X1.75X0.1875 | 33.0 8.15      | Tens 7.51       | g63P       | -0.684NESC Ext  | 13.392    | 9.100     | 10.547 0.750 0.500 0.500      |
| 98.95 109.48 5.6   | 57      | 3    | 1                |                |                 |            |                 |           |           |                               |
| Inner2 I           | nner1   | SAU  | 2X1.5X0.1875     | 33.0 35.29     | Comp 35.29      | g64P       | -0.361NESC Hea  | 1.023     | 9.100     | 10.547 0.500 0.750 0.500      |
| 416.55 416.55 20.  | 365     | 4    | 1                |                |                 |            |                 |           |           |                               |
| XBrace1R XBr       | ace1R   | SAE  | 2X2X0.3125       | 36.0 47.17     | Comp 47.17      | XBrace6P   | -8.584NESC Ext  | 30.542    | 18.200    | 33.984 0.750 0.500 0.500      |
| 81.77 91.33 5.3    | 15      | 2    | 2                |                |                 |            |                 |           |           |                               |
| Horz3 Horizon      | tal 3   | SAE  | 2X2X0.25         | 33.0 89.45     | Tens 81.28      | Horz3X     | -7.397NESC Ext  | 17.545    | 9.100     | 14.062 1.000 1.000 1.000      |
| 122.76 122.76 4.   | 000     | 4    | 1                |                |                 |            |                 |           |           |                               |

### Group Summary (Tension Portion):

| Group<br>No. Hole           | Group   | Angle | Angle            | Steel    | Max   | Usage | Max   | Tension     | Tension Tension | Net      | Tension  | Tension  | Tension  | Length | No.   |
|-----------------------------|---------|-------|------------------|----------|-------|-------|-------|-------------|-----------------|----------|----------|----------|----------|--------|-------|
| Label Of Diameter           | Desc.   | Туре  | Size             | Strength | Usage | Cont- | Use   | Control     | Force Control   | Section  | Connect. | Connect. | Connect. | Tens.  | Of    |
| OI DIAMECEI                 |         |       |                  |          |       | rol   | In    | Member      | Load            | Capacity | Shear    | Bearing  | Rupture  | Member | Bolts |
| Holes                       |         |       |                  |          |       |       | Tens. |             | Case            |          | Canacity | Canadity | Capacity |        | Tens. |
|                             |         |       |                  | (ksi)    | ક     |       | 8     |             | (kips)          | (kips)   |          | (kips)   | (kips)   | (ft)   | Tens. |
| (in)                        |         |       |                  |          |       |       |       |             |                 |          |          |          |          |        |       |
|                             |         |       |                  |          |       |       |       |             |                 |          |          |          |          |        |       |
| Leg1                        | Leg1    | SAU   | 2.5X2X0.1875     | 33.0     | 14.86 | Comp  | 1.46  | Leg1Y       | 0.239NESC Ext   | 17.444   | 18.200   | 21.094   | 16.406   | 5.385  | 2     |
| 1.000 0.6875<br>Leg2        | Leg2    | SAE   | 4X4X0.3125       | 33.0     | 96.10 | Tens  | 96.10 | Lea6Y       | 59.146NESC Ext  | 61.546   | 109.200  | 105.469  | 93.750   | 4.250  | 6     |
| 2.490 0.6875                | _       |       |                  |          |       |       |       | _           |                 |          |          |          |          |        | _     |
| Leg3<br>2.600 0.6875        | Leg3    | SAE   | 4X4X0.4375       | 33.0     | 96.12 | Comp  | 85.99 | Leg8Y       | 71.734NESC Ext  | 83.423   | 0.000    | 0.000    | 0.000    | 6.152  | 0     |
| Leg4                        | Leg4    | SAE   | 5X5X0.375        | 33.0     | 96.54 | Comp  | 74.08 | Leg13Y      | 53.932NESC Ext  | 98.030   | 72.800   | 168.750  | 187.500  | 17.942 | 8     |
| 2.480 0.6875<br>XBrace1     | XBrace1 | SVE   | 1.75x1.75x0.1875 | 33 0     | 55 11 | Tens  | 55 11 | XBrace2X    | 7.124NESC Ext   | 14.585   | 18.200   | 21.094   | 12.850   | 5.315  | 2     |
| 1.000 0.6875                | ADIACEI | JAL   | 1.75%1.75%0.1075 | 33.0     | 33.44 | 16113 | 33.44 | ABIACEZA    | /.IZ4NESC EAC   | 14.505   | 10.200   | 21.034   | 12.030   | 3.313  | 2     |
|                             | XBrace2 | SAU   | 3X2X0.25         | 33.0     | 44.57 | Tens  | 44.57 | XBrace8X    | 7.926NESC Ext   | 17.783   | 27.300   | 42.187   | 32.812   | 5.836  | 3     |
| 3.440 0.6875<br>XBrace3     | XBrace3 | SAE   | 2.5X2.5X0.25     | 33.0     | 65.18 | Comp  | 62.58 | XBrace13X   | 11.390NESC Ext  | 30.238   | 18.200   | 28.125   | 21.875   | 5.836  | 2     |
| 1.000 0.6875                |         |       |                  |          |       | -     |       |             |                 |          |          |          |          |        |       |
| XBrace4<br>1.000 0.6875     | XBrace4 | SAE   | 2X2X0.25         | 33.0     | 54.78 | Comp  | 42.93 | XBrace14XY  | 7.813NESC Ext   | 22.813   | 18.200   | 28.125   | 21.875   | 7.844  | 2     |
| XBrace5                     | XBrace5 | SAE   | 2X2X0.1875       | 33.0     | 62.79 | Cross | 36.41 | XBrace18Y   | 2.784NESC Ext   | 17.258   | 9.100    | 10.547   | 7.646    | 11.183 | 1     |
| 1.000 0.6875<br>XBrace6     | XBrace6 | SAE   | 2.5X2.5X0.1875   | 33 U     | 23 73 | Tens  | 23 73 | XBrace21Y   | 1.946NESC Ext   | 22.961   | 9.100    | 10.547   | 0 203    | 12.709 | 1     |
| 1.000 0.6875                | ADIACEO | SAL   | 2.3A2.3A0.1073   | 33.0     | 23.73 | Tells | 23.73 | ABLACEZII   | 1.940NESC EXC   | 22.901   | 9.100    | 10.547   | 0.203    | 12.709 | Τ.    |
|                             | XBrace7 | SAE   | 3X3X0.25         | 33.0     | 19.27 | Comp  | 13.45 | XBrace22Y   | 1.224NESC Ext   | 37.663   | 9.100    | 14.062   | 10.937   | 15.168 | 1     |
| 1.000 0.6875<br>XBrace8     | XBrace8 | SAU   | 2X1.5X0.1875     | 33.0     | 39.51 | Tens  | 39.51 | XBrace24P   | 5.763NESC Ext   | 14.585   | 18.200   | 21.094   | 16.406   | 24.697 | 2     |
| 1.000 0.6875                |         |       |                  |          |       |       |       | _           |                 |          |          |          |          |        |       |
| Horz1 Horiz<br>1.000 0.6875 | ontal 1 | SAE   | 2X2X0.1875       | 33.0     | 59.13 | Tens  | 59.13 | Horz1P      | 4.521NESC Ext   | 17.258   | 9.100    | 10.547   | 7.646    | 4.000  | 1     |
| Horz2 Horiz                 | ontal 2 | SAU   | 3X2.5X0.25       | 33.0     | 47.17 | Comp  | 0.90  | Horz7P      | 0.082NESC Ext   | 30.090   | 9.100    | 14.062   | 9.164    | 14.400 | 1     |
| 1.000 0.6875<br>Diag1 Dia   | gonal 1 | SAU   | 3.5X2.5X0.25     | 33 U     | Q 61  | Comp  | 0 00  | Diagonal 1Y | 0.000           | 34.856   | 27.300   | 42.187   | 32 012   | 13.153 | 3     |
| 1.550 0.6875                | yonar I | SAU   | J.JAZ.JAU.ZJ     | JJ. U    | 0.01  | Comp  | 0.00  | Diagonal II | 0.000           | 24.036   | 21.300   | 42.10/   | JZ.01Z   | 13.133 | J     |
| Diag2 Dia<br>1.000 0.6875   | gonal 2 | Bar   | 2x3/16           | 33.0     | 71.53 | Tens  | 71.53 | Diagonal 5P | 5.228NESC Hea   | 7.309    | 9.100    | 10.547   | 8.490    | 10.589 | 1     |

| Diag3 Diag<br>1.000 0.6875   | onal 3  | Bar  | 2x1/4                | 33.0  | 31.12  | Tens   | 31.12 Di  | agonal 6P   | 2.832NESC Hea    | 9.745    | 9.100     | 14.062   | 11.320    | 4.000     | 1  |
|------------------------------|---------|------|----------------------|-------|--------|--------|-----------|-------------|------------------|----------|-----------|----------|-----------|-----------|----|
| Arm1                         | Arm1    | DAL  | 2.5X2X0.1875         | 33.0  | 70.01  | Tens   | 70.01     | Arm2P       | 6.371NESC Hea    | 27.231   | 9.100     | 21.094   | 17.121    | 4.000     | 1  |
| 4.000 0.6875<br>Arm2         | Arm2    | SAE  | 2.5x2.5x0.25         | 33.0  | 24.71  | Comp   | 0.81      | Arm8P       | 0.148NESC Ext    | 30.238   | 18.200    | 28.125   | 40.441    | 4.000     | 2  |
| 1.000 0.6875<br><b>Arm3</b>  | Arm3    | SAU  | 3.5x2.5x0.25         | 33.0  | 30.89  | Comp   | 0.00      | Arm6Y       | 0.000            | 34.345   | 18.200    | 28.125   | 25.735    | 4.000     | 2  |
| 1.650 0.6875 A               | potenti | ally | damaging moment exis | ts in | the fo | llowir | ng member | s (make sur | e your system is | well tri | angulated | to minim | mize mome | nts): Arm | 5P |
| Arm5X Arm5XY Arm             | 5Y ??   |      |                      |       |        |        |           |             |                  |          |           |          |           |           |    |
|                              | Inner1  | SAE  | 1.75X1.75X0.1875     | 33.0  | 8.15   | Tens   | 8.15      | g63X        | 0.497NESC Ext    | 14.585   | 9.100     | 10.547   | 6.100     | 5.657     | 1  |
| 1.000 0.6875                 | - 1     |      | 0.11 5.10 1.055      | 22.0  | 25 00  | ~      | 4 00      | C 4**       | 0 201177700 7 .  | 14 505   | 0 100     | 10 545   | 7 646     | 00 065    | -  |
|                              | Inner1  | SAU  | 2X1.5X0.1875         | 33.0  | 35.29  | Comp   | 4.98      | g64X        | 0.381NESC Ext    | 14.585   | 9.100     | 10.547   | 7.646     | 20.365    | 1  |
| 1.000 0.6875                 |         |      |                      |       |        |        |           |             |                  |          |           |          |           |           |    |
| XBrace1R XB                  | race1R  | SAE  | 2X2X0.3125           | 36.0  | 47.17  | Comp   | 46.21     | XBrace6X    | 8.410NESC Ext    | 30.299   | 18.200    | 33.984   | 20.543    | 5.315     | 2  |
| 1.000 0.6875                 |         |      |                      |       |        |        |           |             |                  |          |           |          |           |           |    |
| Horz3 Horizo<br>1.000 0.6875 | ntal 3  | SAE  | 2X2X0.25             | 33.0  | 89.45  | Tens   | 89.45     | Horz3P      | 8.140NESC Ext    | 22.813   | 9.100     | 14.062   | 10.195    | 4.000     | 1  |

<sup>\*\*\*</sup> Maximum Stress Summary for Each Load Case

## Summary of Maximum Usages by Load Case:

| Load Case    | Maximum<br>Usage % | Element<br>Label |       |
|--------------|--------------------|------------------|-------|
| NESC Heavy   | 71.53              | Diagonal 5P      | Angle |
| NESC Extreme | 96.54              | Leg13X           | Angle |

## Summary of Insulator Usages:

| Insulator<br>Label                                                              | Insulator<br>Type                                                                               | Maximum<br>Usage %                                                            | Load Case                                                                                                                                                   | Weight<br>(lbs)                               |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Clamp1 Clamp2 Clamp3 Clamp4 Clamp5 Clamp6 Clamp7 Clamp7 Clamp9 Clamp10 Clamp11  | Clamp<br>Clamp<br>Clamp<br>Clamp<br>Clamp<br>Clamp<br>Clamp<br>Clamp<br>Clamp<br>Clamp<br>Clamp | 3.09<br>3.03<br>4.29<br>4.27<br>4.39<br>4.37<br>4.32<br>4.29<br>15.85<br>1.45 | NESC Heavy NESC Extreme NESC Extreme NESC Extreme                              | (1bs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0       |
| Clamp12 Clamp13 Clamp14 Clamp15 Clamp16 Clamp17 Clamp18 Clamp19 Clamp20 Clamp21 | Clamp                               | 2.20<br>2.81<br>4.91<br>19.60<br>1.45<br>1.57<br>2.07<br>2.20                 | NESC Extreme | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |

| Clamp22 | Clamp | 4.67  | NESC Heavy   | 0.0 |
|---------|-------|-------|--------------|-----|
| Clamp23 | Clamp | 12.63 | NESC Extreme | 0.0 |
| Clamp24 | Clamp | 17.21 | NESC Extreme | 0.0 |
| Clamp25 | Clamp | 14.98 | NESC Extreme | 0.0 |
| Clamp26 | Clamp | 18.23 | NESC Extreme | 0.0 |
| Clamp27 | Clamp | 12.61 | NESC Extreme | 0.0 |
| Clamp28 | Clamp | 8.31  | NESC Heavy   | 0.0 |
| Clamp29 | Clamp | 0.26  | NESC Heavy   | 0.0 |
| Clamp30 | Clamp | 0.36  | NESC Heavy   | 0.0 |
| Clamp31 | Clamp | 0.91  | NESC Extreme | 0.0 |
| Clamp32 | Clamp | 0.66  | NESC Extreme | 0.0 |
| Clamp33 | Clamp | 0.66  | NESC Extreme | 0.0 |
| Clamp34 | Clamp | 1.37  | NESC Heavy   | 0.0 |
| Clamp35 | Clamp | 0.25  | NESC Extreme | 0.0 |
| Clamp36 | Clamp | 0.29  | NESC Heavy   | 0.0 |
| Clamp37 | Clamp | 0.91  | NESC Extreme | 0.0 |
| Clamp38 | Clamp | 0.66  | NESC Extreme | 0.0 |
| Clamp39 | Clamp | 0.66  | NESC Extreme | 0.0 |
| Clamp40 | Clamp | 1.16  | NESC Heavy   | 0.0 |
| Clamp43 | Clamp | 0.25  | NESC Extreme | 0.0 |
| Clamp44 | Clamp | 0.25  | NESC Extreme | 0.0 |
|         |       |       |              |     |

Loads At Insulator Attachments For All Load Cases:

| Load<br>Case | Insulator<br>Label | Insulator<br>Type |     |        |        | Attach |       |
|--------------|--------------------|-------------------|-----|--------|--------|--------|-------|
| NESC Heavy   | Clamp1             | Clamp             | 15P | 0.000  | 0.852  | 1.286  | 1.543 |
| NESC Heavy   | Clamp2             | Clamp             | 15X | 0.000  | 0.799  | 1.287  | 1.515 |
| NESC Heavy   | Clamp3             | Clamp             | 16P | 0.000  | 0.933  | 1.933  | 2.146 |
| NESC Heavy   | Clamp4             | Clamp             | 16X | 0.000  | 0.906  | 1.934  | 2.135 |
| NESC Heavy   | Clamp5             | Clamp             | 17P | 0.000  | 0.940  | 1.985  | 2.196 |
| NESC Heavy   | Clamp6             | Clamp             | 17X | 0.000  | 0.906  | 1.986  | 2.183 |
| NESC Heavy   | Clamp7             | Clamp             | 18P | 0.000  | 0.946  | 1.942  | 2.160 |
| NESC Heavy   | Clamp8             | Clamp             | 18X | 0.000  | 0.906  | 1.943  | 2.144 |
| NESC Heavy   | Clamp9             | Clamp             | 2P  | -1.062 | 1.560  | 1.565  | 2.451 |
| NESC Heavy   | Clamp10            | Clamp             | 4S  | 0.000  | 0.238  | 0.628  | 0.671 |
| NESC Heavy   | Clamp11            | Clamp             | 6S  | 0.000  | 0.312  | 0.705  | 0.771 |
| NESC Heavy   | Clamp12            | Clamp             | 8P  | 0.000  | 0.291  | 0.694  | 0.753 |
| NESC Heavy   | Clamp13            | Clamp             | 10S | 0.000  | 0.355  | 0.857  | 0.927 |
| NESC Heavy   | Clamp14            | Clamp             | 12S | 0.000  | 0.477  | 1.134  | 1.230 |
| NESC Heavy   | Clamp15            | Clamp             | 14S | 0.000  | 0.971  | 2.255  | 2.455 |
| NESC Heavy   | Clamp16            | Clamp             | 2X  | 1.085  | 1.486  | 4.976  | 5.305 |
| NESC Heavy   | Clamp17            | Clamp             | 4 X | 0.000  | 0.185  | 0.628  | 0.654 |
| NESC Heavy   | Clamp18            | Clamp             | 6X  | 0.000  | 0.204  | 0.705  | 0.734 |
| NESC Heavy   | Clamp19            | Clamp             | 8X  | 0.000  | 0.182  | 0.694  | 0.718 |
| NESC Heavy   | Clamp20            | Clamp             | 10X | 0.000  | 0.238  | 0.857  | 0.889 |
| NESC Heavy   | Clamp21            | Clamp             | 12X | 0.000  | 0.332  | 1.134  | 1.182 |
| NESC Heavy   | Clamp22            | Clamp             | 14X | 0.000  | 0.609  | 2.255  | 2.336 |
| NESC Heavy   | Clamp23            | Clamp             | 5s  | 0.308  | -0.231 | 0.403  | 0.557 |
| NESC Heavy   | Clamp24            | Clamp             | 5X  | -0.333 | -0.374 | 4.501  | 4.528 |
| NESC Heavy   | Clamp25            | Clamp             | 2 Y | 1.089  | 1.215  | 0.600  | 1.738 |
| NESC Heavy   | Clamp26            | Clamp             | 2XY | -1.112 | 1.139  | 4.002  | 4.307 |
| NESC Heavy   | Clamp27            | Clamp             | 5Y  | -0.310 | -0.224 | 0.099  | 0.395 |
| NESC Heavy   | Clamp28            | Clamp             | 5XY | 0.335  | -0.362 | 4.124  |       |
| NESC Heavy   | Clamp29            | Clamp             | 4 Y | 0.000  | 0.053  | 0.119  | 0.130 |
| NESC Heavy   | Clamp30            | Clamp             | 6Y  | 0.000  | 0.108  | 0.145  | 0.181 |

| NESC Heavy    | Clamp31 | Clamp | 8Y         | 0.000  | 0.109  | 0.194  | 0.223 |
|---------------|---------|-------|------------|--------|--------|--------|-------|
| NESC Heavy    | Clamp32 | Clamp | 10Y        | 0.000  | 0.117  | 0.202  | 0.233 |
| NESC Heavy    | _       | Clamp | 12Y        | 0.000  | 0.145  | 0.220  | 0.263 |
| NESC Heavy    | -       | Clamp | 14Y        | 0.000  | 0.362  | 0.582  | 0.686 |
| NESC Heavy    | -       | Clamp | 4XY        | 0.000  | 0.000  | 0.119  | 0.119 |
| NESC Heavy    |         | Clamp | 6XY        | 0.000  | 0.000  | 0.145  | 0.145 |
| NESC Heavy    | -       | Clamp | 8XY        | 0.000  | 0.000  | 0.194  | 0.194 |
| NESC Heavy    | -       | Clamp | 10XY       | 0.000  | 0.000  | 0.202  | 0.202 |
| NESC Heavy    | -       | Clamp | 12XY       | 0.000  | 0.000  | 0.220  | 0.220 |
| NESC Heavy    |         | Clamp | 14XY       | 0.000  | 0.000  | 0.582  | 0.582 |
| NESC Heavy    | -       | Clamp | 3XY        | 0.000  | 0.000  | 0.096  | 0.096 |
| NESC Heavy    | -       | Clamp | 3Y         | 0.000  | 0.066  | 0.096  | 0.116 |
| NESC Extreme  | -       | Clamp | 15P        | 0.006  | 0.665  | 0.332  | 0.744 |
| NESC Extreme  | -       | Clamp | 15X        | 0.000  | 0.670  | 0.332  | 0.748 |
| NESC Extreme  | -       | Clamp | 16P        | 0.035  | 0.963  | 0.715  | 1.200 |
| NESC Extreme  |         | Clamp | 16X        | 0.000  | 0.969  | 0.715  | 1.204 |
| NESC Extreme  | _       | Clamp | 17P        | 0.035  | 0.963  | 0.715  | 1.200 |
| NESC Extreme  | -       | Clamp | 17X        | 0.000  | 0.969  | 0.715  | 1.204 |
| NESC Extreme  | _       | Clamp | 18P        | 0.035  | 0.963  | 0.715  | 1.200 |
| NESC Extreme  | -       | Clamp | 18X        | 0.000  | 0.969  | 0.715  | 1.204 |
| NESC Extreme  | -       | Clamp | 2P         | -3.729 | 5.184  | -4.692 | 7.924 |
| NESC Extreme  | -       | Clamp | 4S         | 0.000  | 0.688  | 0.221  | 0.723 |
| NESC Extreme  | _       | Clamp | 6S         | 0.000  | 0.749  | 0.235  | 0.785 |
| NESC Extreme  | _       | Clamp | 8P         | 0.000  | 0.954  | 0.398  | 1.034 |
| NESC Extreme  | -       | Clamp | 105        | 0.000  | 1.039  | 0.356  | 1.098 |
| NESC Extreme  | -       | Clamp | 128        | 0.000  | 1.340  | 0.426  | 1.406 |
| NESC Extreme  | -       | Clamp | 148        | 0.000  | 2.223  | 0.632  | 2.311 |
| NESC Extreme  | _       | Clamp | 2X         | 3.732  | 5.092  | 7.493  | 9.798 |
| NESC Extreme  | -       | Clamp | 4X         | 0.000  | 0.688  | 0.221  | 0.723 |
| NESC Extreme  | -       | Clamp | 6X         | 0.000  | 0.749  | 0.235  | 0.785 |
| NESC Extreme  | -       | Clamp | 8X         | 0.000  | 0.954  | 0.398  | 1.034 |
| NESC Extreme  | -       | Clamp | 10X        | 0.000  | 1.039  | 0.356  | 1.098 |
| NESC Extreme  | -       | Clamp | 10X<br>12X | 0.000  | 1.340  | 0.426  | 1.406 |
| NESC Extreme  | -       | Clamp | 14X        | 0.000  | 2.223  | 0.632  | 2.311 |
| NESC Extreme  | -       | Clamp | 5S         | 1.150  | -1.090 | -6.113 | 6.315 |
| NESC Extreme  | -       | Clamp | 5X         | -1.159 | -1.196 | 8.442  | 8.605 |
| NESC Extreme  | _       | Clamp | 2 Y        | 3.802  | 4.149  | -4.942 | 7.489 |
| NESC Extreme  | -       | Clamp | 2XY        | -3.805 | 4.057  | 7.222  | 9.116 |
| NESC Extreme  | -       | Clamp | 5Y         | -1.155 | -1.065 | -6.108 | 6.306 |
| NESC Extreme  | -       | Clamp | 5XY        | 1.165  | -1.170 | 0.900  | 1.881 |
| NESC Extreme  | _       | Clamp | 44         | 0.000  | 0.096  | 0.083  | 0.127 |
| NESC Extreme  | -       | Clamp | 6Y         | 0.000  | 0.096  | 0.083  | 0.127 |
| NESC Extreme  | -       | Clamp | 84         | 0.000  | 0.372  | 0.262  | 0.455 |
| NESC Extreme  | _       | Clamp | 10Y        | 0.000  | 0.276  | 0.178  | 0.329 |
| NESC Extreme  | -       | Clamp | 101<br>12Y | 0.000  | 0.276  | 0.178  | 0.329 |
| NESC Extreme  | -       | Clamp | 14Y        | 0.000  | 0.276  | 0.178  | 0.329 |
| NESC Extreme  | -       | Clamp | 4XY        | 0.000  | 0.096  | 0.083  | 0.127 |
| NESC Extreme  | -       | Clamp | 6XY        | 0.000  | 0.096  | 0.083  | 0.127 |
| NESC Extreme  | -       | Clamp | 8XY        | 0.000  | 0.372  | 0.262  | 0.127 |
| NESC Extreme  | -       | Clamp | 10XY       | 0.000  | 0.276  | 0.202  | 0.433 |
| NESC Extreme  | -       | Clamp | 12XY       | 0.000  | 0.276  | 0.178  | 0.329 |
| NESC Extreme  | -       | Clamp | 14XY       | 0.000  | 0.276  | 0.178  | 0.329 |
| NESC Extreme  | -       | Clamp | 3XY        | 0.000  | 0.096  | 0.083  | 0.329 |
| NESC Extreme  | -       | Clamp | 3Y         | 0.000  | 0.096  | 0.083  | 0.127 |
| MENC DALLEINE | сташЬяя | сташр | 21         | 0.000  | 0.090  | 0.003  | 0.14/ |

Overturning Moments For User Input Concentrated Loads:

Moments are static equivalents based on central axis of 0.0 (i.e. a single pole).

| Load Case                  |                              | g. Vert.<br>ad Load | Overturning<br>Moment | Longitudinal<br>Overturning<br>Moment<br>(ft-k) | Torsional<br>Moment<br>(ft-k) |
|----------------------------|------------------------------|---------------------|-----------------------|-------------------------------------------------|-------------------------------|
| NESC Heavy<br>NESC Extreme | 14.460 -0.00<br>30.758 0.11  |                     | 930.827<br>1944.487   | 48.698<br>35.102                                | 17.255<br>56.169              |
| _                          | structure (1<br>Angles*Secti | ,                   | 8490.0<br>8490.0      |                                                 |                               |

\*\*\* End of Report







Loads: LC 2, x-dir NESC Extreme Wind on Antenna Frame Results for LC 2, x-dir NESC Extreme Wind on Antenna Frame

| CENTER Engineering, Inc. |  |  |  |
|--------------------------|--|--|--|
| tjl, cfc                 |  |  |  |
| 13305 / AT&T CT2117      |  |  |  |

CL&P # 783 - Mast

Oct 6, 2014 at 10:23 AM

Moment Diagram.r3d







Subject:

Local Member Stress Analysis

Location:

Rev. 4: 10/6/14

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

# **Antenna Mast Top Connection:**

## Maximum Design Reactions at Brace:

Compression Force = Compression := 13.3-kips (User Input from PLS-Tower)

Tension Force = Tension := 10.5·kips (User Input from PLS-Tower)

Moment = M<sub>y</sub>:= 1.471-ft-kips (User Input - Moment @ 6-in from brace point)

Moment =  $M_v := 0.126 \cdot \text{ft-kips}$  (User Input - Moment @ 6-in from brace point)

Member Properties:

Member Type = L4x4x5/16

Member Width = W := 4 - in (User Input)

Member Thickness =  $t := 0.3125 \cdot in$  (User Input)

Member Area =  $A := 2.4 \cdot in^2$  (User Input)

Moment of Inertia =  $I_{X}$ := 3.67·in<sup>4</sup> (User Input)

Moment of Inertia =  $I_v := 3.67 \cdot in^4$  (User Input)

Section Modulus x-dir =  $S_x = 1.27 \cdot in^3$  (User Input)

Section Modulus y-dir =  $S_V := 1.27 \cdot \text{in}^3$  (User Input)

Unbraced Length =  $L := 3.5 \cdot \text{ft}$  (User Input)

Effective Length Coefficient = K := 1 (User Input)

Radius of Gyration =  $r_y$ := 1.24·in (User Input)

Radius of Gyration =  $r_V := 1.24 \cdot in$  (User Input)

Yield Stress = F<sub>V</sub> := 33·ksi (User Input)

Modulus of Elasticity = E := 29000·ksi (User Input)



Subject:

Local Member Stress Analysis

Location:

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 13305.000

Rev. 4: 10/6/14

Calculate Design Compression Stress:

(Per ASCE 10-97 Section 3.6 and 3.7)

Width Thickness Ratio = 
$$w_t := \frac{w - k_{des}}{t} = 10.8$$

Yield Stress = 
$$F_y := \begin{bmatrix} F_y & \text{if } w \end{bmatrix}$$

$$F_{y} := \left[ \begin{array}{c} F_{y} \text{ if } w\_t < \frac{80}{\sqrt{f_{y}}} \\ \\ \left[ 1.677 - 0.677 \cdot \frac{w\_t}{\left(\frac{80}{\sqrt{f_{y}}}\right)} \right] \cdot F_{y} \text{ if } \frac{80}{\sqrt{f_{y}}} \le w\_t \le \frac{144}{\sqrt{f_{y}}} \\ \\ \frac{0.0332 \cdot \pi^{2} \cdot E}{\left(w\_t\right)^{2}} \text{ if } w\_t > \frac{144}{\sqrt{f_{y}}} \end{array} \right]$$
 (3.7-2)

$$\frac{0.0332 \cdot \pi^2 \cdot E}{(w_t)^2} \quad \text{if} \quad w_t > \frac{144}{\sqrt{f_y}}$$
 (3.7-3)

Column Slenderness Ratio = 
$$C_C := \pi \cdot \sqrt{\frac{2 \cdot E}{F_y}} = 131.706$$
 (3.6-3)

Design Axial Com pressive Stress = 
$$F_{a} := \begin{bmatrix} \begin{bmatrix} \sqrt{\frac{K \cdot L}{r_{x}}} \\ 1 - 0.5 \left( \frac{\frac{K \cdot L}{r_{x}}}{C_{c}} \right)^{2} \end{bmatrix} \cdot F_{y} & \text{if } \frac{K \cdot L}{r_{x}} \le C_{c} \\ \frac{\pi^{2} \cdot E}{\left( \frac{K \cdot L}{r_{x}} \right)^{2}} & \text{if } \frac{K \cdot L}{r_{x}} > C_{c} \end{bmatrix} = 31.9 \text{ ksi}$$
(3.6-1)

Calculate Allowable Bending Moment:

(Per ASCE 10-97 Section 3.14.8)

$$b := w - \frac{t}{2} = 3.844 \cdot in$$

Elastic Critical Moment = 
$$M_{e} := \frac{\left(0.66 \cdot E \cdot b^{4} \cdot t\right)}{\left(K \cdot L\right)^{2}} \cdot \sqrt{1 + \frac{0.81 \cdot \left(K \cdot L\right)^{2} \cdot t^{2}}{b^{4}}} + 1 = 1687.8 \cdot \text{kips-in}$$
 (3.14-7)

Moment Causing Compressive Yield = 
$$M_{XC} := F_V \cdot S_X = 41.91 \cdot \text{in} \cdot \text{kips}$$
 (3.14-9)

Moment Causing Compressive Yield = 
$$M_{yc} := F_y \cdot S_y = 41.91 \cdot \text{kips-in}$$
 (3.14-9)



Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Local Member Stress Analysis

Location: Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 4: 10/6/14 Job No. 13305.000

Check Combined Axial Compression and Bending:

(Per ASCE 10-97 Section 3.12)

Bending Coefficient =

 $C_m := 1$ 

(for restrained ends)

Applied Axial Compression =

 $P := Compression = 13.3 \cdot kips$ 

Design Axial Compression =

 $P_a := F_a \cdot A = 76.6 \cdot kips$ 

Axial Compression at Yield =

 $P_V := F_V \cdot A = 79.2 \cdot kips$ 

Euler Bukling Load =

 $P_{ex} := \frac{\pi^2 \cdot E \cdot I_x}{(K \cdot L)^2} = 595.5 \cdot kips$ 

Euler Bukling Load =

 $P_{ey} := \frac{\pi^2 \cdot E \cdot I_y}{(K \cdot L)^2} = 595.5 \cdot kips$ 

$$Condition1 := i \left[ \frac{P}{P_{a}} + \frac{C_{m} \cdot M_{x}}{M_{xc}} \cdot \left[ \frac{1}{\left(1 - \frac{P}{P_{ex}}\right)} \right] + \frac{C_{m} \cdot M_{y}}{M_{yc}} \cdot \left[ \frac{1}{\left(1 - \frac{P}{P_{ey}}\right)} \right] \le 1.00, "OK", "Overstressed" \right]$$
(3.12-1)

Condition1 = "OK"

Condition2 := if  $\left(\frac{P}{P_y} + \frac{M_x}{M_{xc}} + \frac{M_y}{M_{yc}} \le 1.00, "OK", "Overstressed"\right)$ (3.12-2)

Condition2 = "OK"



Subject:

Local Member Stress Analysis

Location:

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 13305.000

Rev. 4: 10/6/14

### **Antenna Mast Bottom Connection:**

## Maximum Design Reactions at Brace:

Compression Force = Compression := 52.8 kips (User Input from PLS-Tower)

Tension Force = Tension := 47.6 kips (User Input from PLS-Tower)

Moment =  $M_y := 0.65 \cdot \text{ft-kips}$  (User Input - Max Moment)

Moment =  $M_v := 0.035 \cdot \text{ft-kips}$  (User Input - Max Moment)

Member Properties:

Member Type = L4x4x5/16

Member Width = w := 4 - in (User Input)

Member Thickness =  $t := 0.3125 \cdot in$  (User Input)

 $\label{eq:Member Area} \text{Member Area} = \qquad \qquad \text{A} := 2.4 \cdot \text{in}^2 \qquad \qquad \text{(User Input)}$ 

Moment of Inertia =  $I_x = 3.67 \cdot \text{in}^4$  (User Input)

Moment of Inertia =  $I_{V} = 3.67 \cdot in^{4}$  (User Input)

Section Modulus x-dir =  $S_x = 1.27 \cdot in^3$  (User Input)

Section Modulus y-dir =  $s_y = 1.27 \cdot in^3$  (User Input)

Unbraced Length = L := 4 -ft (User Input)

Effective Length Coefficient = K := 1 (User Input)

Radius of Gyration =  $r_{\chi}$ := 1.24·in (User Input)

Radius of Gyration =  $r_v := 1.24 \cdot in$  (User Input)

Yield Stress =  $F_V := 33 \cdot \text{ksi}$  (User Input)

Modulus of Elasticity = E := 29000·ksi (User Input)



Subject:

Local Member Stress Analysis

Location:

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 4: 10/6/14

Job No. 13305.000

Calculate Design Compression Stress:

F: (203) 488-8587

(Per A SCE 10-97 Section 3.6 and 3.7)

Width Thickness Ratio =

$$w\_t := \frac{w - k_{des}}{t} = 6.976$$

Yield Stress =

$$F_{y} \coloneqq \left[ \begin{cases} F_{y} & \text{if } w\_t < \frac{80}{\sqrt{f_{y}}} \\ \left[ 1.677 - 0.677 \cdot \frac{w\_t}{\left( \frac{80}{\sqrt{f_{y}}} \right)} \right] \cdot F_{y} & \text{if } \frac{80}{\sqrt{f_{y}}} \le w\_t \le \frac{144}{\sqrt{f_{y}}} \end{cases} \right] = 33 \cdot \text{ksi} \tag{3.7-1}$$
 
$$\frac{0.0332 \cdot \pi^{2} \cdot E}{\left( w\_t \right)^{2}} & \text{if } w\_t > \frac{144}{\sqrt{f_{y}}} \tag{3.7-3}$$

$$\begin{bmatrix} L & (\sqrt{y}) \\ \frac{0.0332 \cdot \pi^2 \cdot E}{(w \ t)^2} & \text{if } w_t > \frac{144}{\sqrt{f_v}} \end{bmatrix}$$
 (3.7-3)

Column Slenderness Ratio =

$$C_{c} := \pi \cdot \sqrt{\frac{2 \cdot E}{F_{y}}} = 131.706$$
 (3.6-3)

Design Axial Com pressive Stress =

$$F_{a} := \begin{bmatrix} \begin{bmatrix} \left[ \frac{K \cdot L}{r_{x}} \right]^{2} \\ 1 - 0.5 \left( \frac{K \cdot L}{r_{x}} \right)^{2} \end{bmatrix} \cdot F_{y} & \text{if } \frac{K \cdot L}{r_{x}} \le C_{c} \\ \frac{\pi^{2} \cdot E}{\left( \frac{K \cdot L}{r_{y}} \right)^{2}} & \text{if } \frac{K \cdot L}{r_{x}} > C_{c} \end{bmatrix} = 31.6 \cdot \text{ksi}$$

$$(3.6-1)$$

Calculate Allowable Bending Moment:

(Per ASCE 10-97 Section 3.14.8)

$$b := w - \frac{t}{2} = 3.844 \cdot in$$

$$M_{e} := \frac{\left(0.66 \cdot E \cdot b^{4} \cdot t\right)}{\left(K \cdot L\right)^{2}} \cdot \left[ \sqrt{1 + \frac{0.81 \cdot \left(K \cdot L\right)^{2} \cdot t^{2}}{b^{4}}} + 1 \right] = 1334.3 \cdot \text{kips-in}$$
 (3.14-7)

Moment Causing Compressive Yield =

$$M_{XC} := F_V \cdot S_X = 41.91 \cdot in \cdot kips$$
 (3.14-9)

(3.14-9)

Moment Causing Compressive Yield =

$$M_{VC} := F_{V} \cdot S_{V} = 41.91 \cdot kips \cdot in$$

Lateral Bukling Moment =

$$M_b := \begin{bmatrix} M_e & \text{if} & M_e \le 0.5 \cdot M_{yc} \\ M_{yc} \cdot \left(1 - \frac{M_{yc}}{4 \cdot M_e}\right) & \text{if} & M_e > 0.5 \cdot M_{yc} \end{bmatrix} = 41.6 \cdot \text{kips-in}$$

$$(3.14-5)$$

Allowable Moment =

$$M_{a} := \left( \begin{array}{c} M_{yc} & \text{if } M_{yc} \le M_{b} \\ M_{b} \end{array} \right) = 41.6 \cdot \text{kips-in}$$
(3.14-6)



Local Member Stress Analysis

F: (203) 488-8587

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 13305.000

Subject:

Location:

Rev. 4: 10/6/14

Check Combined Axial Compression and Bending:

(Per A SCE 10-97 Section 3.12)

Bending Coefficient =

 $C_m := 1$  (for restrained ends)

Applied Axial Compression =

P := Compression = 52.8-kips

Design Axial Com pression =

 $P_a := F_a \cdot A = 75.8 \cdot kips$ 

Axial Compression at Yield =

 $P_V := F_V \cdot A = 79.2 \cdot kips$ 

Euler Bukling Load =

 $P_{ex} := \frac{\pi^2 \cdot E \cdot I_x}{(K \cdot L)^2} = 455.9 \cdot kips$ 

Euler Bukling Load =

 $P_{ey} := \frac{\pi^2 \cdot E \cdot I_y}{(K \cdot I)^2} = 455.9 \cdot kips$ 

Condition1 = "OK"

$$Condition2 := if \left( \frac{P}{P_y} + \frac{M_\chi}{M_{\chi c}} + \frac{M_y}{M_{y c}} \le 1.00, "OK", "Overstressed" \right)$$
 (3.12-2)

Condition2 = "OK"

## Section Properties: Section1

## Section Information:

| Section Information:   |   |           |      |
|------------------------|---|-----------|------|
| Material Type          | = | General   |      |
| Shape Type             | = | Arbitrary |      |
| Number of Shapes       | = | 2         |      |
| Basic Properties:      |   |           |      |
| Total Width            | = | 4.313     | in   |
| Total Height           | = | 4.313     | in   |
| Centroid, Xo           | = | -0.400    | in   |
| Centroid, Yo           | = | -0.400    | in   |
| X-Bar (Right)          | = | 2.400     | in   |
| X-Bar (Left)           | = | 1.912     | in   |
| Y-Bar (Top)            | = | 2.400     | in   |
| Y-Bar (Bot)            | = | 1.912     | in   |
| Max Thick              | = | 0.349     | in   |
| Equivalent Properties: |   |           |      |
| Area, Ax               | = | 7.180     | in^2 |
| Inertia, lxx           | = | 16.259    | in^4 |
| Inertia, lyy           | = | 16.259    | in^4 |
| Inertia, Ixy           | = | 0.078     | in^4 |
| Sx (Top)               | = | 6.774     | in^3 |
| Sx (Bot)               | = | 8.502     | in^3 |
| Sy (Left)              | = | 8.502     | in^3 |
| Sy (Right)             | = | 6.774     | in^3 |
| rx                     | = | 1.505     | in   |
| ry                     | = | 1.505     | in   |
| Plastic Zx             | = | 10.127    | in^3 |
| Plastic Zy             | = | 10.453    | in^3 |
| Torsional J            | = | 17.583    | in^4 |
| As-xx Def              | = | 1.000     |      |
| As-yy Def              | = | 1.000     |      |
| As-xx Stress           | = | 1.000     |      |
| As-yy Stress           | = | 1.000     |      |
|                        |   |           |      |



Section Diagram

C:\RISA\SectionProject1 Page 1



Subject:

Local Member Stress Analysis

Meriden, CT

Location:

Rev. 4: 10/6/14

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

## **Antenna Mast Top Connection:**

## Maximum Design Reactions at Brace:

Compression Force = Compression := 13.4-kips (User Input from PLS-Tower)

Tension Force = Tension := 10.5-kips (User Input from PLS-Tower)

Moment =  $M_x := 5.045 \cdot \text{ft-kips}$  (User Input - Max Moment)

Moment =  $M_v := 0.431 \cdot \text{ft-kips}$  (User Input - Max Moment)

Member Properties:

Member Type = L4x4x5/16 w/ HSS4x4x3/8

Member Width =  $w := 4.32 \cdot in$  (User Input)

Member Thickness =  $t := 0.35 \cdot in$  (User Input)

Member Area =  $A := 7.18 \cdot in^2$  (User Input)

Moment of Inertia =  $I_{x}$ := 16.26·in<sup>4</sup> (User Input)

Moment of Inertia =  $I_v := 16.26 \cdot in^4$  (User Input)

Section Modulus x-dir =  $S_x := 6.78 \cdot in^3$  (User Input)

Section Modulus y-dir =  $S_{\gamma} := 6.78 \cdot \text{in}^3$  (User Input)

Unbraced Length = L := 3.5·ft (User Input)

Effective Length Coefficient = K := 1 (User Input)

Radius of Gyration =  $r_{v}$ := 1.51·in (User Input)

Radius of Gyration =  $r_V := 1.51 \cdot in$  (User Input)

Yield Stress =  $F_V := 33 \cdot \text{ksi}$  (User Input)

Modulus of Elasticity = E := 29000-ksi (User Input)



Subject:

Local Member Stress Analysis

Location:

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

Meriden, CT

Rev. 4: 10/6/14

Calculate Design Compression Stress:

F: (203) 488-8587

(Per ASCE 10-97 Section 3.6 and 3.7)

Width Thickness Ratio = 
$$w_t := \frac{w - k_{des}}{t} = 10.557$$

$$F_y := \begin{bmatrix} F_y & \text{if } w_t < \frac{80}{\sqrt{f_y}} \end{bmatrix} = 33 \cdot \text{ksi}$$
 (3.7-1)

$$F_{y} := \left[ \begin{array}{c} F_{y} \text{ if } w\_t < \frac{80}{\sqrt{f_{y}}} \\ \\ \left[ 1.677 - 0.677 \cdot \frac{w\_t}{\left(\frac{80}{\sqrt{f_{y}}}\right)} \right] \cdot F_{y} \text{ if } \frac{80}{\sqrt{f_{y}}} \le w\_t \le \frac{144}{\sqrt{f_{y}}} \\ \\ \frac{0.0332 \cdot \pi^{2} \cdot E}{\left(w\_t\right)^{2}} \text{ if } w\_t > \frac{144}{\sqrt{f_{y}}} \end{array} \right]$$
 (3.7-2)

$$\left[ \frac{0.0332 \cdot \pi^2 \cdot E}{(w_t)^2} \text{ if } w_t > \frac{144}{\sqrt{f_y}} \right]$$
 (3.7-3)

$$C_{c} := \pi \cdot \sqrt{\frac{2 \cdot E}{F_{y}}} = 131.706$$
 (3.6-3)

$$F_{\mathbf{a}} := \begin{bmatrix} \begin{bmatrix} \sqrt{\frac{\mathbf{K} \cdot \mathbf{L}}{r_{\mathbf{x}}}} \\ 1 - 0.5 \left( \frac{\frac{\mathbf{K} \cdot \mathbf{L}}{r_{\mathbf{x}}}}{C_{\mathbf{c}}} \right)^{2} \end{bmatrix} \cdot F_{\mathbf{y}} & \text{if } \frac{\mathbf{K} \cdot \mathbf{L}}{r_{\mathbf{x}}} \le C_{\mathbf{c}} \\ \frac{\pi^{2} \cdot \mathbf{E}}{\left( \frac{\mathbf{K} \cdot \mathbf{L}}{r_{\mathbf{x}}} \right)^{2}} & \text{if } \frac{\mathbf{K} \cdot \mathbf{L}}{r_{\mathbf{x}}} > C_{\mathbf{c}} \end{bmatrix} = 32.3 \cdot \text{ksi}$$

$$(3.6-1)$$

Calculate Allowable Bending Moment:

(Per ASCE 10-97 Section 3.14.8)

$$b := w - \frac{t}{2} = 4.145 \cdot in$$

Elastic Critical Moment = 
$$M_e := \frac{\left(0.66 \cdot E \cdot b^4 \cdot t\right)}{\left(K \cdot L\right)^2} \cdot \left[ \sqrt{1 + \frac{0.81 \cdot \left(K \cdot L\right)^2 \cdot t^2}{b^4}} + 1 \right] = 2535.9 \cdot \text{kips-in}$$
 (3.14-7)

$$M_{XC} := F_V \cdot S_X = 223.74 \cdot in \cdot kips$$
 (3.14-9)

(3.14-9)

$$M_{VC} := F_V \cdot S_V = 223.74 \cdot \text{kips-in}$$



Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Local Member Stress Analysis

Location: Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 4: 10/6/14 Job No. 13305.000

Check Combined Axial Compression and Bending:

(Per ASCE 10-97 Section 3.12)

Bending Coefficient =

 $C_m := 1$ 

(for restrained ends)

Applied Axial Compression =

 $P := Compression = 13.4 \cdot kips$ 

Design Axial Compression =

$$\textbf{P}_a := \textbf{F}_a {\cdot} \textbf{A} = 231.7 {\cdot} \textbf{kips}$$

Axial Compression at Yield =

$$P_V := F_V \cdot A = 236.94 \cdot kips$$

Euler Bukling Load =

$$P_{ex} := \frac{\pi^2 \cdot E \cdot I_x}{(K \cdot L)^2} = 2638.3 \cdot kips$$

Euler Bukling Load =

$$P_{ey} := \frac{\pi^2 \cdot E \cdot I_y}{(K \cdot L)^2} = 2638.3 \cdot kips$$

Condition1 = "OK"

$$Condition2 := if \left( \frac{P}{P_y} + \frac{M_\chi}{M_{\chi c}} + \frac{M_y}{M_{yc}} \le 1.00, "OK", "Overstressed" \right)$$
 (3.12-2)

Condition2 = "OK"



Subject:

Local Member Stress Analysis

Location:

Rev. 4: 10/6/14

Meriden, CT

(User Input)

(User Input)

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

## **Antenna Mast Bottom Connection:**

## Maximum Design Reactions at Brace:

Compression Force = (User Input from PLS-Tower) Compression := 52.8·kips Tension Force = Tension := 47.6 kips (User Input from PLS-Tower) Moment = $M_{\mathbf{x}} := 1.733 \cdot \text{ft-kips}$ (User Input - Max Moment) Moment = (User Input - Max Moment)  $M_V := 0.094 \cdot ft \cdot kips$ 

Member Properties:

Section Modulus x-dir =

Unbraced Length =

Member Type = L4x4x5/16 w/ HSS4x4x3/8

Member Width = (User Input)  $w:=4.32 \cdot in$ 

Member Thickness =  $t := 0.35 \cdot in$ (User Input)

 $A := 7.18 \cdot in^2$ Member Area = (User Input)

 $I_{X} = 16.26 \cdot in^{4}$ Moment of Inertia = (User Input)

 $I_v := 16.26 \cdot in^4$ Moment of Inertia = (User Input)

 $S_x := 6.78 \cdot in^3$ (User Input)

 $\mathsf{S}_y \coloneqq 6.78 \cdot \mathsf{in}^3$ Section Modulus y-dir = (User Input) L:= 4.0·ft

K := 1

Effective Length Coefficient =

Radius of Gyration =  $r_x := 1.51 \cdot in$ (User Input)

Radius of Gyration =  $\boldsymbol{r_{V}} \coloneqq 1.51{\cdot}i\boldsymbol{n}$ (User Input)

Yield Stress =  $F_V := 33 \cdot ksi$ (User Input)

Modulus of Elasticity = E := 29000·ksi (User Input)



Subject:

Local Member Stress Analysis

Location:

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 4: 10/6/14

Job No. 13305.000

Calculate Design Compression Stress:

F: (203) 488-8587

(Per ASCE 10-97 Section 3.6 and 3.7)

Width Thickness Ratio =

$$w_t := \frac{w - k_{des}}{t} = 10.557$$

Yield Stress =

$$F_{y} := \begin{bmatrix} F_{y} & \text{if } w_{\underline{t}} < \frac{80}{\sqrt{f_{y}}} \\ \left[ 1.677 - 0.677 \cdot \frac{w_{\underline{t}}}{\left( \frac{80}{\sqrt{f_{y}}} \right)} \right] \cdot F_{y} & \text{if } \frac{80}{\sqrt{f_{y}}} \le w_{\underline{t}} \le \frac{144}{\sqrt{f_{y}}} \\ \frac{0.0332 \cdot \pi^{2} \cdot E}{\left( w_{\underline{t}} \right)^{2}} & \text{if } w_{\underline{t}} > \frac{144}{\sqrt{f_{y}}} \end{bmatrix}$$

$$(3.7-1)$$

Meriden, CT

$$\left[\begin{array}{c} \sqrt{f_y} \end{array}\right] = \begin{array}{c} \sqrt{f_y} \end{array}$$

$$\frac{0.0332 \cdot \pi^2 \cdot E}{2} \quad \text{if } w_t > \frac{144}{\sqrt{f_y}}$$

$$(3.7-3)$$

Column Slenderness Ratio =

$$C_{C} := \pi \cdot \sqrt{\frac{2 \cdot E}{F_{y}}} = 131.706$$
 (3.6-3)

Design Axial Com pressive Stress =

$$F_{a} := \begin{bmatrix} \begin{bmatrix} \left[ \frac{K \cdot L}{r_{x}} \right]^{2} \\ 1 - 0.5 \left( \frac{K \cdot L}{r_{x}} \right)^{2} \end{bmatrix} \cdot F_{y} & \text{if } \frac{K \cdot L}{r_{x}} \le C_{c} \\ \frac{\pi^{2} \cdot E}{\left( \frac{K \cdot L}{r_{x}} \right)^{2}} & \text{if } \frac{K \cdot L}{r_{x}} > C_{c} \end{bmatrix} = 32 \cdot \text{ksi}$$

$$(3.6-1)$$

Calculate Allowable Bending Moment:

(Per ASCE 10-97 Section 3.14.8)

$$b := w - \frac{t}{2} = 4.145 \cdot in$$

$$M_{e} := \frac{\left(0.66 \cdot E \cdot b^{4} \cdot t\right)}{\left(K \cdot L\right)^{2}} \cdot \left[ \sqrt{1 + \frac{0.81 \cdot \left(K \cdot L\right)^{2} \cdot t^{2}}{b^{4}}} + 1 \right] = 2001.6 \cdot \text{kips-in}$$
(3.14-7)

Moment Causing Compressive Yield =

$$\mathsf{M}_{\mathsf{XC}} \coloneqq \mathsf{F}_{\mathsf{V}} \cdot \mathsf{S}_{\mathsf{X}} = 223.74 \cdot \mathsf{in} \cdot \mathsf{kips} \tag{3.14-9}$$

Moment Causing Compressive Yield =

$$M_{VC} := F_{V} \cdot S_{V} = 223.74 \cdot \text{kips} \cdot \text{in}$$
 (3.14-9)

Lateral Bukling Moment =

$$M_b := \begin{bmatrix} M_e & \text{if} & M_e \le 0.5 \cdot M_{yc} \\ M_{yc} \cdot \left(1 - \frac{M_{yc}}{4 \cdot M_e}\right) & \text{if} & M_e > 0.5 \cdot M_{yc} \end{bmatrix} = 217.5 \cdot \text{kips-in}$$
 (3.14-5)

Allowable Moment =

$$M_{a} := \begin{pmatrix} M_{yc} & \text{if } M_{yc} \leq M_{b} \\ M_{b} \end{pmatrix} = 217.5 \cdot \text{kips-in}$$
(3.14-6)



 Subject:

Local Member Stress Analysis

Location:

Rev. 4: 10/6/14

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 13305.000

Check Combined Axial Compression and Bending:

(Per A SCE 10-97 Section 3.12)

Bending Coefficient =

 $C_m := 1$ 

(for restrained ends)

Applied Axial Compression =

 $P := Compression = 52.8 \cdot kips$ 

Design Axial Compression =

$$P_a := F_a \cdot A = 230 \cdot kips$$

Axial Compression at Yield =

$$P_v := F_v \cdot A = 236.94 \cdot kips$$

Euler Bukling Load =

$$P_{ex} := \frac{\pi^2 \cdot E \cdot I_x}{(K \cdot L)^2} = 2019.9 \cdot kips$$

Euler Bukling Load =

$$P_{ey} := \frac{\pi^2 \cdot E \cdot I_y}{(K \cdot L)^2} = 2019.9 \cdot kips$$

$$Condition 1 := i \left[ \frac{P}{P_a} + \frac{C_m \cdot M_x}{M_{xc}} \cdot \left[ \frac{1}{\left(1 - \frac{P}{P_{ex}}\right)} \right] + \frac{C_m \cdot M_y}{M_{yc}} \cdot \left[ \frac{1}{\left(1 - \frac{P}{P_{ey}}\right)} \right] \le 1.00, "OK", "Overstressed" \right]$$
(3.12-1)

Condition1 = "OK"

Condition2 := if 
$$\left(\frac{P}{P_y} + \frac{M_x}{M_{xc}} + \frac{M_y}{M_{yc}} \le 1.00, "OK", "Overstressed"\right)$$
 (3.12-2)

Condition2 = "OK"



 Subject:

Foundation Analysis CL&P Tower # 783

Location: Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 4: 10/6/14 Job No. 13305.000

## **Foundation Analysis**

## Input Data:

#### Max. Reactions at Tower Leg:

Shear = Shear := 60.66-1.1-kips = 66.7-kips (User Input - Tot. Base Shear)

Compression = Comp := 130.05·1.1·kips = 143.1·kips (User Input - Tot. Compression)

Uplift = Uplift := 113.12·1.1·kips = 124.4·kips (User Input - Tot. Uplift)

#### Tower Properties:

Tower Height =  $H_t := 78 \cdot \text{ft}$  (User Input)

Distance to Uplift Legs = d<sub>uplift</sub> := 24.5·ft (User Input)

Distance to Compression Legs =  $d_{comp} := 2.5 \cdot ft$  (User Input)

#### Foundation Properties:

Pier Height =  $P_H := 2.75 \cdot \text{ft}$  (User Input)

Pier Width Top =  $P_{W1} := 1.333 \cdot ft$  (User Input)

Pier Width Botttom =  $P_{w2} := 2.15 \cdot \text{ft}$  (User Input)

Pier Length =  $P_1 := 2.08 \cdot \text{ft}$  (User Input)

Pier Projection Above Grade =  $P_p := 2.75$ -ft (User Input)

Pad Width 1 =  $Pd_{w1} := 4.5 \cdot ft$  (User Input)

Pad Width 2 =  $Pd_{w2} := 2.17 \cdot ft$  (User Input)

Pad Thickness =  $Pd_t = 2.0 \cdot ft$  (User Input)

 $\mathsf{Mat}\,\mathsf{Thickness} = \mathsf{Mat}_\mathsf{f} \coloneqq 3.5 \cdot \mathsf{ft} \qquad \qquad \mathsf{(User\,Input)}$ 

#### Subgrade Properties:

Concrete Unit Weight =  $\gamma c := 150 \cdot pcf$  (User Input)

Water Unit Weight =  $\gamma w := 62.4 \cdot pcf$  (User Input)

Soil Unit Weight =  $\gamma s := 100 \cdot pcf$  (User Input)

 $\mbox{Uplift Angle =} \qquad \qquad \psi := 30.0 \mbox{-deg} \qquad \qquad \mbox{(User Input)} \label{eq:policy}$ 

Soil Bearing Capacity = BC<sub>soil</sub> := 9000-psf (User Input)

Subject:

Foundation Analysis CL&P Tower # 783

Location:

F: (203) 488-8587

Meriden, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 4: 10/6/14

Job No. 13305.000

## **Calculated Data:**

Volume of the Concrete Pads = 
$$V_{pad} := Pd_{w1} \cdot Pd_{w2} \cdot Pd_{t} \cdot 4 = 78.12 \cdot ft^3$$

Volume of the Concrete Piers = 
$$V_{pier} := \frac{\left(P_{w1} + P_{w2}\right)}{2} \cdot P_{H} \cdot P_{I} \cdot 4 = 39.85 \cdot ft^{3}$$

Volume of the Concrete Mat = 
$$V_{mat} := \left(Mat_{W}^{2} \cdot Mat_{t}\right) = 2551 \cdot ft^{3}$$

Total Volume of Concrete = 
$$V_{Conc} := V_{pad} + V_{mat} + V_{pier} = 2669 \cdot ft^3$$

Mass of Concrete = 
$$Mass_{Conc} := V_{Conc} \cdot \gamma c = 400.4 \cdot kips$$

Check Overturning:

Overturning Moment = 
$$OM := Uplift \cdot d_{uplift} + Shear \cdot \left(P_H + Mat_t\right) = 3465.6 \cdot kip \cdot ft$$

Resisting Moment = 
$$RM := Comp \cdot d_{comp} + Mass_{conc} \cdot \frac{Mat_{W}}{2} = 5763.3 \cdot kip \cdot ft$$

Required Factor of Safety = 
$$F_S := 1.0$$

$$ActualFS := \frac{RM}{OM} = 1.66$$

Uplift\_Check := if 
$$\left(\frac{RM}{OM} \ge F_S$$
, "OK", "Overstressed"  $\right)$ 

### Check Bearing:

Cross Sectional Area of Mat = 
$$A_{mat} := Mat_{w}^{2} = 729ft^{2}$$

Section Modulus of Mat = 
$$S_{\text{mat}} := \frac{\left(\text{Mat}_{W}\right)^{3}}{6} = 3280 \cdot \text{ft}^{3}$$

Bearing := 
$$\frac{Comp + Mass_{Conc}}{A_{mat}} + \frac{OM}{S_{mat}} = 1.8 \cdot ksf$$

Bearing\_Check := if(Bearing 
$$\leq$$
 BC<sub>soil</sub>, "OK", "No Good")

Bearing\_Check = "OK"

| ## Company of the Co  |                                    |                  |                 |                                      |                   | Costion 4 DEDC C                         | ENERAL INCORMATION                   | ON                        |                     |                                                  |                   |                |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|-----------------|--------------------------------------|-------------------|------------------------------------------|--------------------------------------|---------------------------|---------------------|--------------------------------------------------|-------------------|----------------|----------------|
| 1900 1900 1900 1900 1900 1900 1900 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RFDS NAME:                         |                  |                 | DATE:                                | 5/                | 19/2014                                  | RF DESIGN ENG:                       | JN                        | Radu Al             | ecsandru                                         | RF PERF ENG:      |                |                |
| Processing   Process   P   | ISSUE:<br>REVISION:                | Pre-con<br>vi    | struction<br>04 | Approved? (Y/N)<br>RF MANAGER:       | Cam               |                                          | RF DESIGN PHONE:<br>RF DESIGN EMAIL: |                           | ra91610<br>860-51   | Patt.com<br>13-7598                              |                   |                |                |
| Procession of Pipe for lawer and zerous purposes, please design, it is not the final policy plane and zerous purposes, please design, it is not the final policy plane and zerous purposes, please and zerous purposes, please and zerous purposes, please and zerous    |                                    |                  |                 |                                      | •                 |                                          |                                      |                           |                     |                                                  |                   |                |                |
| Section   Sect   | INITIATIVE / PROJECT:              | Pre-construction | n RFDS for leas | ing and zoning                       | purposes, gener   | ral design. It is not t                  | the finalized loca                   | tion, CL and azi          | muths.              |                                                  | UMTS FREQUENCY:   |                |                |
| March   Mar    |                                    |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| STATE OF THE PROPERTY OF THE   |                                    |                  |                 |                                      |                   | Section 2 - LOCA                         | ATION INFORMATION                    |                           |                     |                                                  |                   |                |                |
| 1900   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | USID:<br>REGION:                   | N                | E               | FA LOCATION CODE:<br>MARKET CLUSTER: |                   | СТ                                       |                                      | LOCATION NAME:<br>MARKET: | Meriden - Ed<br>N   | gemark Acres<br>ER                               |                   | Meriden - Ed   | gemark Acres   |
| 1400 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ADDRESS:.                          | 200 Edger        | nark Acres      | CITY:                                |                   | Merio                                    | den                                  |                           | (                   | T                                                |                   | S2             | 117            |
| Second Science   Seco   | LATITUDE (D-M-S):                  | 41°31'5          | 1.74"N          | LONGITUDE (D-M-S):                   |                   | 72°50'33                                 | 3.64*W                               | LAT (DEC. DEG.):          |                     |                                                  | LONG (DEC. DEG.): |                |                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DIRECTIONS, ACCESS AND             |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  | CONTOUR COORD:    |                |                |
| Martin   M   | EQUIPMENT LOCATION:                |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  | (Y/N):            |                |                |
| Martin   M   |                                    |                  |                 |                                      | s                 | ection 3 - LICENSE COV                   | ERAGE/FILING INFOR                   | RMATION                   |                     |                                                  | FREQ COORD:       |                |                |
| # Control And Service   Property Service   Propert  |                                    |                  |                 |                                      | CGSA LOSS:        |                                          |                                      |                           |                     | 2:                                               |                   |                |                |
| Manual   M   |                                    |                  |                 |                                      | CGSA SCORECARD UP | DATED:                                   | CHIL ATORY INFORM                    | ATION                     | PCS POPS REDUCED:   |                                                  |                   |                |                |
| Control   Cont   | STRUCTURE AT&T OWNED?              |                  |                 | GROLIND ELEVATION:                   |                   | Section 4 - TOWERRE                      |                                      | ATION                     | MARKET LOCATION 85  | O MHZ CALL SIGN(S):                              |                   |                |                |
| Section   Sect   |                                    |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| The Control of Control |                                    |                  |                 |                                      |                   |                                          | PCC ASK NOWBER.                      |                           |                     |                                                  |                   |                |                |
| Second   S   |                                    |                  |                 | STRUCTURE HEIGHT:                    |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIGHTING TYPE:                     |                  |                 |                                      |                   | Section 5. E.                            | 911 INFORMATION                      |                           | WARKET LUCATION AV  | vs MHZ CALL SIGN(S):                             |                   |                |                |
| The color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALDUA                              |                  | PSAP I          | NAME:                                |                   |                                          |                                      | MPC SVC                   | PROVIDER:           | LMU REQUIRED:                                    | ESRN:             | DATE LIVE PH1: | DATE LIVE PH2: |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    |                                    |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | DELTA                              |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | EPSILON<br>PSI                     |                  |                 |                                      |                   |                                          |                                      |                           |                     | <del>                                     </del> |                   |                |                |
| March   Marc   | A-DIGIT SITE ID:                   |                  | \$2117          | COW OR TOYS:                         |                   | Section 6 - RBS GI                       | ENERAL INFORMATIO                    | CELLULAR NETWORK          |                     |                                                  | DISASTER PRIORITY | l              |                |
| Company   Com    | CELL SITE TYPE:                    |                  | Sectorized      | SITE TYPE:                           |                   | No                                       | ,                                    | OPS DISTRICT:             |                     |                                                  | OPS ZONE:         |                |                |
| Section 1 - Mark 1980   Mark 1 | BIS LOCATION ID:                   |                  |                 | UNIGINATING CO:                      |                   |                                          |                                      |                           |                     |                                                  | IKF ZONE:         |                |                |
| Section 5   Sect   | MSC                                | GSM              | RBSs            | UMTS 1ST C                           | ARRIER RBSs       | UMTS 2ND CA                              | ARRIER RBSs                          | UMTS 3RD (                | CARRIER RBSs        | UMTS 4TH 0                                       | CARRIER RBSs      | LTE            | RBSs           |
| Section 5   Sect   | BSC/RNC                            |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| Section 5   Sect   | RAC<br>FOLURMENT VENDOR            |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| COMPAND   COMP   | EQUIPMENT TYPE                     |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| COMPAND   COMP   | CABINET LOCATION                   |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| Section 1 -   Part   Section   |                                    | GSM 850 RBS      | GSM 1900 RBS    | UMTS 850 RBS                         | UMTS 1900 RBS     | Section 8 - RBS IND<br>UMTS 2ND 850 RBS  | UMTS 2ND 1900 RBS                    | UMTS 3RD 850 RBS          | UMTS 3RD 1900 RBS   | UMTS 4TH 850 RBS                                 | UMTS 4TH 1900 RBS | LTE 700 RBS    | LTE AWS RBS    |
| DECEMBRY   COMPANY   COM   | CELL ID/BCF<br>CTS COMMON ID       |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| DECEMBRY   COMPANY   COM   |                                    |                  |                 |                                      |                   | Section 9 - S                            | OFT SECTOR ID                        |                           |                     |                                                  |                   |                | 185 1110 000   |
| Section 12 - CUMPS 200 SERVER   SECTION 200 SERVE   |                                    | GSINI 850 RBS    | G3M 1900 KB3    | UN13 850 RBS                         | OWIS 1900 KBS     | UM 15 2ND 850 RBS                        | UM13 2ND 1900 RB3                    | UM15 3RD 850 RB5          | OWI 12 3KD 1900 KB3 | UMIS 41H 850 RBS                                 | OM15 41H 1900 RBS | LIE 700 RBS    | LIE AWS RBS    |
| CSM 550 RS   CSM 1900 RS   CSM 1900 RS   CMTS 1900 RS   CMTS 1900 RS   CMTS 1900 RS   CMTS 1910 RS   CMTS 191   | GAMMA                              |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| CSM 550 RS   CSM 1900 RS   CSM 1900 RS   CMTS 1900 RS   CMTS 1900 RS   CMTS 1900 RS   CMTS 1910 RS   CMTS 191   | DELTA<br>EPSILON                   |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| CSM 550 RS   CSM 1900 RS   CSM 1900 RS   CMTS 1900 RS   CMTS 1900 RS   CMTS 1900 RS   CMTS 1910 RS   CMTS 191   | PSI                                |                  |                 |                                      |                   | Section                                  | 10 - CID/SAC                         |                           |                     |                                                  |                   |                |                |
| Section 11 - CURRENT ADDIO COUNTS (Existing)  Section 15 - CURRENT ADDIO COUNTS (Existing)  Section 15 - CURRENT ADDIO COUNTS (Existing)  Section 15 - CURRENT THOUGHTS UMTS 3RD 550 RBS UMTS 3RD 1900 RBS UMTS 4TH 1900 RBS UMTS 4T | ALDHA (OD OMNII)                   | GSM 850 RBS      | GSM 1900 RBS    | UMTS 850 RBS                         | UMTS 1900 RBS     | UMTS 2ND 850 RBS                         | UMTS 2ND 1900 RBS                    | UMTS 3RD 850 RBS          | UMTS 3RD 1900 RBS   | UMTS 4TH 850 RBS                                 | UMTS 4TH 1900 RBS | LTE 700 RBS    | LTE AWS RBS    |
| Section 11 - CURRENT ADDIO COUNTS (Existing)  Section 15 - CURRENT ADDIO COUNTS (Existing)  Section 15 - CURRENT ADDIO COUNTS (Existing)  Section 15 - CURRENT THOUGHTS UMTS 3RD 550 RBS UMTS 3RD 1900 RBS UMTS 4TH 1900 RBS UMTS 4T | BETA                               |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| PRIOR (DR MN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DELTA                              |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| PRIOR (DR MN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSI PSI                            |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| PRIOR (DR MN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | GSM 850 RBS      | GSM 1900 RBS    | UMTS 850 RBS                         | UMTS 1900 RBS     | Section 11 - CURRENT<br>UMTS 2ND 850 RBS | UMTS 2ND 1900 RBS                    | sting) UMTS 3RD 850 RBS   | UMTS 3RD 1900 RBS   | UMTS 4TH 850 RBS                                 | UMTS 4TH 1900 RBS | LTE 700 RBS    | LTE AWS RBS    |
| Section 12 - CURRENT T1 COUNTS (Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALPHA (OR OMNI)<br>BETA            |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| Section 12 - CURRENT T1 COUNTS (Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GAMMA<br>DELTA                     |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| Company   Comp   | EPSILON                            |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| NER OF CHENNET?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                  |                 |                                      |                   |                                          |                                      |                           | 1                   |                                                  | 1                 |                |                |
| REGIST MODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W T1s                              | GSM 1st          | Cabinet         | GSM 2ni                              | d Cabinet         | UMTS 1st                                 | Cabinet                              | UMTS 2                    | nd Cabinet          | LTE 1st                                          | Cabinet           | LTE 2nd        | Cabinet        |
| New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                  |                 |                                      |                   |                                          | ·                                    |                           |                     |                                                  |                   |                |                |
| AWYCEU Bard (TY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tx Board Model                     |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| BUILDOWN MODER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RAX/ECU Board Model                |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| Section 13 - NEW/PROPOSED RADIO COUNTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BBU Board Model                    |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| GSM 850 RBS   GSM 1900 RBS   UMTS 200 RBS   UMTS 1900 RBS   UMTS 200 350 RBS   UMTS 200 1900 RBS   UMTS    | RRU - location                     |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| PAN (OR KONN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | GSM 850 RBS      | GSM 1900 RBS    | UMTS 850 RBS                         | UMTS 1900 RBS     | Section 13 - NEW/PR<br>UMTS 2ND 850 RBS  | UMTS 2ND 1900 RBS                    | UMTS 3RD 850 RBS          | UMTS 3RD 1900 RBS   | UMTS 4TH 850 RBS                                 | UMTS 4TH 1900 RBS | LTE 700 RBS    | LTE AWS RBS    |
| AMMAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALPHA (OR OMNI)<br>BETA            |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| Section 14 - NEW/PROPOSED T1 COUNTS  Section 14 - NEW/PROPOSED T1 COUNTS  UMTS 2nd Cabinet  UMTS 2nd Cabinet  UMTS 2nd Cabinet  UTE 1st Cabinet  LTE 2nd Cabinet  UTE 2nd Cabinet  UMTS 2nd Cabi | GAMMA                              |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| TS GSM 1st Cabinet GSM 2nd Cabinet UMTS 1st Cabinet UMTS 2nd Cabinet UTE 1st Cabinet LTE 2nd Cabinet NIN PROPILE BIS or ETHERNET?  **Board Model**  **WAPCEU Board Model**  **WAPCEU Board GTY**  **BU Board Model**  **BU BOARD M |                                    |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| T15  NR POPULE  BER OF ETHERNET?  BEROW MODEL  BEROW MODE |                                    |                  |                 |                                      |                   |                                          |                                      | rs                        | 1                   |                                                  | 1                 |                |                |
| IBBR OF CHEARITY  KBOART MODEL  KBOART MODEL | #T1s                               | GSM 1st          | Cabinet         | GSM 2ni                              | d Cabinet         | UMTS 1st                                 | Cabinet                              | UMTS 2                    | nd Cabinet          | LTE 1st                                          | Cabinet           | LTE 2nd        | Cabinet        |
| x board Model  kboard Model  AW/ECU Board Model  AW/ECU Board Model  BU Board Model  BU Board OTY  BU Board TOY  BU B                                              | LINK PROFILE<br>FIBER or ETHERNET? |                  |                 |                                      |                   |                                          |                                      |                           |                     | <del>                                     </del> |                   |                |                |
| AX/EU Baard Model AX/EU Baard TOY BU Board Model BU Board OY BU Board TOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tx Board Model                     |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| BU Board Model BU Board TY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RAX/ECU Board Model                |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
| NO SOURCE OF THE PROPERTY OF T | BBU Board Model                    |                  |                 |                                      |                   |                                          |                                      |                           |                     |                                                  |                   |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                  |                 | 1                                    |                   | l                                        |                                      |                           |                     | ļ                                                |                   | -              |                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cardian 45A                                                    | - CURRENT SECTOR/CELL INFORMATION -                                                               | ALDHA (OD OMNI)                                                    |                                                           |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| ANTENNA CONFIG (FROM BACK):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANTENNA 1  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)          | ANTENNA 2  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)                                             | ANTENNA 3 GSM, UMTS (850 / 1900) or LTE (700 / AWS)                | ANTENNA 4<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) | ANTENNA 5<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) |
| TX/RX?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| FEEDERS ( # /TYPE/LENGTH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                              | ,                                                                                                 |                                                                    |                                                           |                                                           |
| ANTENNA MAKE - MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA VENDOR ANTENNA SIZE H"xW"xD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA GAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | ļ                                                                                                 |                                                                    |                                                           |                                                           |
| RADIATION CENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA TIP HEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| MAGNETIC DECLINATION<br>ELECTRICAL TILT (700/850/1900/AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| MECHANICAL DOWNTILT SCPA/MCPA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                                                                                                   | ·                                                                  |                                                           |                                                           |
| MCPA MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| MCPA MODULES HATCHPLATE POWER (Watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                       |                                                                                                   | l l                                                                |                                                           |                                                           |
| NARROW BAND LLC (QTY/MODEL)<br>HYBRID COMBINER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| TMA/LNA (TYPE/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| CURRENT INJECTORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| CURRENT INJECTORS FOR TIMA<br>CURRENT INJECTS POWER CABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA SHAKING KIT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| BAS Filter DIPLEXER (OTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| DUPLEXER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| SURGE ARRESTOR (QTY/MODEL) DC BLOCK (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| DC BLOCK (QTY/MODEL) RET EQUIPMENT (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                       |                                                                                                   |                                                                    | <u> </u>                                                  | <u> </u>                                                  |
| 1900 PDU FOR TMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | ASD OURDENT OF COMMENT                                                                            | TION DETA                                                          |                                                           |                                                           |
| ANTENNA CONFIG (FROM BACK):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                         | on 15B - CURRENT SECTOR/CELL INFORMAT<br>ANTENNA 2<br>GSM, UMTS (850 / 1900) or                   | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | ANTENNA 4<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) | ANTENNA 5<br>GSM, UMTS (850 / 1900) or                    |
| TV (NV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LTE (700 / AWS)                                                | LTE (700 / AWS)                                                                                   | LTE (700 / AWS)                                                    | LTE (700 / AWS)                                           | LTE (700 / AWS)                                           |
| TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                | · · · · · · · · · · · · · · · · · · ·                                                             |                                                                    |                                                           |                                                           |
| FEEDERS ( # /TYPE/LENGTH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                   |                                                                    |                                                           | •                                                         |
| ANTENNA MAKE - MODEL<br>ANTENNA VENDOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA SIZE H"xW"xD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA WEIGHT<br>ANTENNA GAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | ļ                                                                                                 |                                                                    |                                                           |                                                           |
| AZIMUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| RADIATION CENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA TIP HEIGHT<br>MAGNETIC DECLINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ELECTRICAL TILT (700/850/1900/AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| MECHANICAL DOWNTILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                                                                                   | ·                                                                  |                                                           |                                                           |
| SCPA/MCPA?<br>MCPA MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| HATCHPLATE POWER (Watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| RAP (Watts) NARROW BAND LLC (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| HYBRID COMBINER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| TMA/LNA (TYPE/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                | 1                                                                                                 |                                                                    |                                                           |                                                           |
| CURRENT INJECTORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| CURRENT INJCTR POWER CABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| ANTENNA SHARING KIT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| DIPLEXER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| DUPLEXER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| SURGE ARRESTOR (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| SURGE ARRESTOR (QTV/MODEL) DC BLOCK (QTV/MODEL) RET EQUIPMENT (QTV/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| DC BLOCK (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                   |                                                                    |                                                           |                                                           |
| DC BLOCK (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section Section                                                | n 15C - CURRENT SECTOR/CELL INFORMAT                                                              | ION - GAMMA                                                        | ANTENNA A                                                 | ANTENNAS                                                  |
| OC BLOCK (GTY/MODEL) 1900 PDU FOR TMAS  ANTENNA CONFIG (FROM BACK):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Section  ANTENNA 1  GSM, UMTS (850 / 1900) or  LTE (700 / AWS) | n 15C - CURRENT SECTOR/CELL INFORMAT<br>ANIENNA 2<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) | ION - GAMMA  ANTENNA 3  GSM, UMTS (850 / 1900) or  LTE (700 / AWS) | ANTENNA 4 GSM, UMTS (830 / 1900) or LTE (700 / AWS)       | ANTENNA 5<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) |
| OC BLOCK (QTY/MODEL) 1900 PDU FOR TMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (820 / 1900) or LTE (700 / AMS)       | ANTENNA 5<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) |
| C BLOCK (GTY/MODEL) ET ECUJIMENT (GTY/MODEL) 900 POU FOR TMAS  INTERNA CONFIG (FROM BACK): TZ/RZ? TECHNOLOGY ECHOS (JETY/ELENSTH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, JUNTS (80 / 1900) or LTE (700 / AWS)       | ANTENNA 5<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) |
| DC BLOCK (GTY/MODEL) TE TOUMMANT (GTY/MODEL) SUB TOUMMANT (GTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) |
| DC BLOCK (GTY/MODEL) TE TOUMMANT (GTY/MODEL) SUB TOUMMANT (GTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UM75 (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850/ 1900) or LTE (700 / AWS)        |
| CX BLOCK (GTY/MODEL) TET TOUMMANT (GTY/MODEL) 300 FOUL FOR THAN 300 FOUL FOR THAN 300 FOUL FOR THAN 500 FOUL FOR THAN 500 FOUL FOR THAN 500 FOUR 50 | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UNITS (850 / 1900) or LTE (700 / AWS)      |
| OC BLOCK (QTY/MODEL) STET COURING TO (QTY/MODEL) STOR FOUL FOR TAMAS  INTERNA CONFIG (FROM BACK):  EXPRESS  EXPRESS  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  GENTENA AND ENDOR  INTERNA AND ENDOR  INTERNA AND ENDOR  INTERNA SENDOR  INTERNA  | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       |
| CE BLOCK (GTY/MODEL) ET ECQUIMENT (GTY/MODEL) 9500 POU FOR TMAS  INTERNA CONFIG (FROM BACK):  X/RX7  ECHNOLOGY ECHNO | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNAS<br>GSM, JUNTS (850 / 1900) or<br>LTE (700 / AWS) |
| IC BLOCK (GTY)MODEL)  TE TCUIDMENT (GTY)MODEL)  SOS DEUT (GTY)MODEL  SOS DEUT (GTY)MODE | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UNITS (850 / 1900) or LTE (700 / AWS)      |
| IC BLOCK (GTY)MODEL)  TE TCUIDMENT (GTY)MODEL)  SOS DEUT (GTY)MODEL  SOS DEUT (GTY)MODE | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENIA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850/ 1900) or LTE (700 / AWS)        |
| DC BLOCK (GTP/MODEL) TE TCOUMMENT (GTP/MODEL) TOOD TOUT ON THAN TO TOUT ON THE | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1990) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       |
| DC BLOCK (GTP/MODEL) ET EQUIPMENT (GTP/MODEL) 1900 POUT OR TAMAS  WITENNA CONFIG (FROM BACK):  ZURKY ECHNOLOGY ECHNOLOGY ECHNOLOGY ECHNOLOGY ELINEA (GTP/FE/LENGTH) MITENNA MARE - MODEL MITENNA VENDOR MITENNA SUR F WY"AD*  MITENNA SUR F WY"AD*  MITENNA GAN ZURWITH AGOINTO CENTER MITENNA GAN ZURWITH MADIATION CENTER MITENNA GAN ELINGTHIN GONEL ELINGT | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       |
| XX BLOCK (GTY/MODEL) ET ELOUMANT (GTY/MODEL) SUB TOUMANT (GTY/MODEL) SUB TOUMANT (GTY/MODEL) ELORIOLOGY ELORIO | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (830 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       |
| DC BLOCK (GTP/MODEL) ET EQUIPMENT (GTP/MODEL) 1900 POUT OR TAMAS  WITENNA CONFIG (FROM BACK):  ZURKY ECHNOLOGY ECHNOLOGY ECHNOLOGY ECHNOLOGY ELINEA (GTP/FE/LENGTH) MITENNA MARE - MODEL MITENNA VENDOR MITENNA SUR F WY"AD*  MITENNA SUR F WY"AD*  MITENNA GAN ZURWITH AGOINTO CENTER MITENNA GAN ZURWITH MADIATION CENTER MITENNA GAN ELINGTHIN GONEL ELINGT | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UNITS (850 / 1900) or LTE (700 / AWS)      |
| DC BLOCK (GTY/MODEL) ET ECQUIMENT (GTY/MODEL) 9500 POU FOR TMAS  INTERNA CONFIG (FROM BACK):  X/RX2  ECHNOLOGY ECHNO | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UNITS (820 / 1900) or LTE (700 / AWS)      | ANTENNA 5 GSM, UMTS (850/1900) or LITE (700 / AWS)        |
| CX BLOCK (GTY/MODEL) ET EQUIPMENT (GTY/MODEL) 1900 POUT OR TAMAS  INTERNA CONFIG (FROM BACK):  X/KYX ECHNOLOGY ECHNO | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UNITS (850 / 1900) or LTE (700 / AWS)      |
| CX BLOCK (GTY/MODEL) ET EQUIPMENT (GTY/MODEL) 1900 POUT OR TAMAS  INTERNA CONFIG (FROM BACK):  X/KYX ECHNOLOGY ECHNO | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       |
| XX BLOCK (GTY/MODEL) TET COUMENT (GTY/MODEL) TO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1990) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       |
| OX BLOCK (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TECHNOLOGY TEC | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, OMTS (850 / 1900) or LTE (760 / AWS)       |
| XX BLOCK (GTY/MODEL) TET COUMENT (GTY/MODEL) TO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UMTS (850 / 1900) or LITE (700 / AWS)      |
| OS BLOCK (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TECHNOLOGY TEC | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UNITS (850 / 1900) or LTE (780 / AWS)      |
| OS BLOCK (GTY/MODEL)  TET TOUMHANT (GTY/MODEL)  SUPPORT OF THAN  TARRY  TECHNOLOGY  TECHNO | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, LWITS (850 / 1900) or LTE (700 / AWS)      | ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       |
| OS BLOCK (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TET TOUMMENT (GTY/MODEL) TECHNOLOGY TEC | GSM, UMTS (850 / 1900) or                                      | ANTENNA 2                                                                                         | GSM. UMTS (850 / 1900) or                                          | ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)       | ANTENNA 5 GSM, UNTS (850 / 1900) or LTE (700 / AWS)       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section                                                    | on 15D - CURRENT SECTOR/CELL INFORMAT                                                              | ION - DELTA                                                        |                                                           |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| ANTENNA CONFIG (FROM BACK):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANTENNA 1<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)  | ANTENNA 2<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)                                          | ANTENNA 3<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)          | ANTENNA 4<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) | ANTENNA 5<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) |
| TX/RX?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| RECINOLOGY (# /TYPE/LENGTH) ANTENNA MAKE - MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA MAKE - MODEL ANTENNA VENDOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA SIZE H"XW"XD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA GAIN<br>AZIMUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                          | ,                                                                                                  | l                                                                  |                                                           |                                                           |
| ANTENNA TIP HEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | ļ                                                                                                  |                                                                    |                                                           |                                                           |
| MAGNETIC DECLINATION ELECTRICAL TILT (700/850/1900/AWS) MECHANICAL DOWNTILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| SCPA/MCPA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| MCPA MODULES HATCHPLATE POWER (Watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ERP (Watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| NARROW BAND LLC (QTY/MODEL)<br>HYBRID COMBINER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| TMA/LNA (TYPE/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| CURRENT INJECTORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA SHARING KIT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                    |                                                                    |                                                           | <u> </u>                                                  |
| BAS Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| DIPLEXER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| DUPLEXER (QTY/MODEL) SURGE ARRESTOR (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                    |                                                                    |                                                           | <u> </u>                                                  |
| DC BLOCK (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| RET EQUIPMENT (QTY/MODEL)<br>1900 PDU FOR TMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                                                                                    |                                                                    | 1                                                         |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section                                                    | 15E - CURRENT SECTOR/CELL INFORMATION                                                              | ON - EPSILON                                                       |                                                           |                                                           |
| ANTENNA CONFIG (FROM BACK):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANTENNA 1<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)  | ANTENNA 2<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)                                          | ANTENNA 3<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)          | ANTENNA 4<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) | ANTENNA 5<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) |
| TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| FEEDERS ( # /TYPE/LENGTH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |                                                                                                    |                                                                    |                                                           | 1                                                         |
| ANTENNA MAKE - MODEL ANTENNA VENDOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA SIZE H"xW"xD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA GAIN<br>AZIMUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            | ,                                                                                                  |                                                                    |                                                           | ļ                                                         |
| RADIATION CENTER<br>ANTENNA TIP HEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA TIP HEIGHT MAGNETIC DECLINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ELECTRICAL TILT (700/850/1900/AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ELECTRICAL TILT (700/850/1900/AWS)<br>MECHANICAL DOWNTILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| SCPA/MCPA?<br>MCPA MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| HATCHPLATE POWER (Watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ERP (Watts) NARROW BAND LLC (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            | ļ                                                                                                  |                                                                    |                                                           |                                                           |
| HYBRID COMBINER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| TMA/LNA (TYPE/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| CURRENT INJECTORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| CURRENT INJETR POWER CABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| ANTENNA SHARING KIT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| BAS Filter DIPLEXER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| DUPLEXER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| SURGE ARRESTOR (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| DC BLOCK (QTY/MODEL) RET EQUIPMENT (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| RET EQUIPMENT (QTY/MODEL) 1900 PDU FOR TMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                                                                    |                                                                    |                                                           |                                                           |
| RET EQUIPMENT (QTY/MODEL) 1900 PDU FOR TMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section                                                    | on 15F - CURRENT SECTOR/CELL INFORMAT                                                              | TION - ZETA                                                        |                                                           |                                                           |
| RET EQUIPMENT (QTY/MODEL) 1990 PDU FOR TMAS ANTENNA CONFIG (FROM BACK):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sectic ANTENNA 1 GSM, UMTS (850 / 1900) or LTE (700 / AWS) | on 15F - CURRENT SECTORICELL INFORMAT<br>ANTENNA 2<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) | TION - ZETA  ANTENNA 3  GSM, UMTS (850 / 1900) or  LTE (700 / AWS) | ANTENNA 4<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) | ANTENNA 5<br>GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS) |
| RET EQUIPMENT (QTY/MODEL) 990 PDU FOR TMAS  ANTENNA CONFIG (FROM BACK):  TX/PK2  ECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL) 990 PDU FOR TMAS  ANTENNA CONFIG (FROM BACK):  TX/PK2  ECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL) 990 PDU FOR TMAS  ANTENNA CONFIG (FROM BACK):  TX/PK2  ECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (GYP/MODEL)  SPO POUT OR THAN  ANTENNA CONFIG (FROM BACK):  TX/RIC?  FECHNOLOGY  FECHNOLOGY  HETENNA AME: MODEL  MITTENNA AME: MODEL  MITTENNA SERVE (NY) "O"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (GYP/MODEL)  SPO POUT OR THAN  ANTENNA CONFIG (FROM BACK):  TX/RIC?  FECHNOLOGY  FECHNOLOGY  HETENNA AME: MODEL  MITTENNA AME: MODEL  MITTENNA SERVE (NY) "O"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL)  900 POUL POR TMANS  ANTENNA CONFIG (FROM BACK):  TZ/RX?  FECHNOLOGY  FECHNO | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL)  900 POUL OR TMANS  INTERNAL CONFIG (FROM BACK):  DE/INST  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  METENAN AME:—MODEL  METENAN ASE:—H.WY.SO  METENAN ASE:— | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL) 990 POU POR TMANS  990 POU POR TMANS  EXPRES  EXPRES | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL)  900 POUL OR TMAN  INTERNA CORPIG (PROM BACK):  DV/RC)  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  MITEMAN AME: -MODEL  MITEMAN AME: -MODEL  MITEMAN ASE IT: -MW'',50'  MITEMAN ASE IT: -MW'',50'  MITEMAN ASE IT: -MW'',50'  MITEMAN ASE IT: -MW'',50'  MITEMAN AGAN  ZUMUTH  MITEMAN AGAN  ZUMUTH  MITEMAN AGAN  ZUMUTH  MITEMAN AGAN  MITEMAN AMENTER  MITEMAN AGAN  MITEMAN AMENTER  MITEMAN AMENTER  MITEMAN AMENTER  MITEMAN AT IT: FEGITI  MAGNATE COECUMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (GYP/MODEL)  900 POUL OR TMANS  ANTENNA CONFIG (FROM BACK):  FORCY  TOPICO CONTROL OF CONTROL OR | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (GYP/MODEL)  900 POUL ON TIMAS  ANTENNA CONFIG (FROM BACK):  TEXPS?  ELECTROLOGY   | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| LET EQUIMENT (GT/MODEL)  SOO POUT OR TMAS  INTERNA CORFIG (FROM BACK):  TYPE  TECHNOLOGY  ECHNOLOGY  ECHNOLOGY | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (GY/MODEL)  900 POUL OR TMANS  INTERNA CORPIG (FROM BACK):  DYRO  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  MITEMA ARE -MODEL  MITEMA ARE -M | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (GY/MODEL)  900 POUL OR TMANS  INTERNA CORPIG (FROM BACK):  DYRO  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  MITEMA ARE -MODEL  MITEMA ARE -M | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL)  900 POUL OR TMAN  ANTENNA CONFIG (FROM BACK):  TECHNOLORY  ECHNOLORY  ECHNOLORY  ECHNOLORY  METERNA WAS E-MODEL  MITERNA MARE -MODEL  MITERNA SEE HEW'SD'  MITERNA GAN  MITERNA G | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| NET EQUIPMENT (QTY/MODEL)  900 POUT ON T MANS  INTERNA CONFIG (FROM BACK):  IX/RXY  FECHNOLOGY  FECHNO | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| NET EQUIPMENT (GYP/MODEL)  900 POUT ON T MANS  INTERNA CONFIG (FROM BACK):  DEATH OF THE CONFIG (FROM BACK):  DEATH OF THE CONFIG (FROM BACK):  DETERNA MARE - MODEL  MITEMAN ASEL PHOW'SO'  MARKET CHECHANTON  | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| NET EQUIPMENT (GYP/MODEL)  900 POUT ON T MANS  INTERNA CONFIG (FROM BACK):  DEATH OF THE CONFIG (FROM BACK):  DEATH OF THE CONFIG (FROM BACK):  DETERNA MARE - MODEL  MITEMAN ASEL PHOW'SO'  MARKET CHECHANTON  | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL)  900 POUT ON T MAS  INTERNA CONFIG (FROM BACK):  DE/MES  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  METENAN ASEE H-W'SO'  METENAN ASSEE H-W' | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL)  900 POUL OR TMANS  INTERNA CORPIG (PROM BACK):  DYRO  PECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  MITENAN ARE: -MODEL  MITENAN ARE: -M | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| NET EQUIPMENT (QTY/MODEL)  909 FOUR OR TOMAS  ANTERNA CONFIG (FROM BACK):  TX/RX?  TECHNOLOGY  TECHNOLOGY  TECHNOLOGY  TECHNOLOGY  ANTERNA MAREMODEL  ANTERNA AYER/OR  ANTERNA TRIMATION  ANTERNA TRIMATION  ANTERNA TRIMATION  ANTERNA TRIMATION  ANTERNA TRIMATION  ELECTRICA, TIT (700/850/1900/AWS)  EL   | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |
| RET EQUIPMENT (QTY/MODEL)  900 POUL OR TMANS  INTERNA CORPIG (PROM BACK):  DYRO  PECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  FECHNOLOGY  MITENAN ARE: -MODEL  MITENAN ARE: -M | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                     | ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                             | ANTENNA 3<br>GSM, UMTS (850 / 1900) or                             | GSM, UMTS (850 / 1900) or                                 | GSM, UMTS (850 / 1900) or                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section 16A - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| ANTENNA CONFIG (FROM BACK):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANTENNA 1<br>GSM, UMTS (850 / 1900) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EW/PROPOSED SECTOR/CELL INFORMATIO<br>ANTENNA 2<br>GSM, UMTS (850 / 1900) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANTENNA 3 GSM, UMTS (850 / 1900) or                                 | ANTENNA 4<br>GSM, UMTS (850 / 1900) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ANTENNA 5<br>GSM, UMTS (850 / 1900) or                     |
| The state of the s | TBD TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TBD TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LTE (700 / AWS)                                                     | LTE (700 / AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LTE (700 / AWS)                                            |
| TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LIMTS-DR / LTE HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LTE-DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | LTE-DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |
| FEEDERS (#/TYPE/LENGTH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 / 1-5/8" CommScope / TBD '<br>HPA-65R-BUU-H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 / 1-5/8" CommScope / TBD '<br>OPA-65R-LCUU-H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | 4 / 1-5/8" CommScope / TBD '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
| ANTENNA MAKE - MODEL ANTENNA VENDOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | CCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| ANTENNA SIZE H"xW"xD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCI<br>93 x 15 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCI<br>93 x 15 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | CCI<br>93 x 15 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |
| ANTENNA WEIGHT ANTENNA GAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68<br>17.4 dBi (high band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95<br>17.2 dBi (high band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | 68<br>17.4 dBi (high band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
| AZIMUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| RADIATION CENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88 '<br>92 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 88'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| ANTENNA TIP HEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | 92 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |
| ELECTRICAL TILT (700/850/1900/AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| MECHANICAL DOWNTILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| MCPA MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| HATCHPLATE POWER (Watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| ERP (Watts) NARROW RAND LLC (OTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| RRH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 850 RRUS11/1900 RRUS12/1900 RRUS-A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 700 RRUS-E2/850 RRUS11/WCS RRUS32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | 700 RRUS11/1900 RRUS12/1900 RRUS-A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| TMA/LNA (TYPE/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
| CURRENT INJECTORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| ANTENNA SHARING KIT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
| BAS Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| DIPLEXER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 / Kaelus DBC2055F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 / Kaelus DBC2055F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     | 2 / Kaelus DBC2055F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                          |
| DUPLEXER (QTY/MODEL) SURGE ARRESTOR (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a<br>2 / Andrew APTDC-BDFDM-DBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a<br>8 / Andrew APTDC-BDFDM-DBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | n/a<br>6 / Andrew APTDC-BDFDM-DBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |
| DC BLOCK (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| RET EQUIPMENT (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| 1900 FDO FDR TIMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCU - Kathrein 860 10006<br>Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/a<br>6B - NEW/PROPOSED SECTOR/CELL INFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RMATION - BETA                                                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANTENNA 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANTENNA 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANTENNA 3                                                           | ANTENNA 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANTENNA 5                                                  |
| ANTENNA CONFIG (FROM BACK):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GSM, UMTS (850 / 1900) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)                        | GSM, UMTS (850 / 1900) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GSM, UMTS (850 / 1900) or<br>LTE (700 / AWS)               |
| TX/RX?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TBD TBD UMTS-DB / LTE HB 4 / 1-5/8" CommScope / TBD ' HPA-65R-BUU-H8 CCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TBD TBD<br>LTE-DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                   | TBD TBD  LTE-DB  4 / 1-5/8* CommScope / TBD '  HPA-65R-BUU-H8  CCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |
| FEEDERS (#/TYPE/LENGTH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 / 1-5/8" CommScope / TBD '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 / 1-5/8" CommScope / TBD '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 4 / 1-5/8" CommScope / TBD '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
| ANTENNA MAKE - MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HPA-65R-BUU-H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OPA-65R-LCUU-H8<br>CCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | HPA-65R-BUU-H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |
| ANTENNA VENDOR ANTENNA SIZE H"xW"xD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93 x 15 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93 x 15 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | 93 x 15 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |
| ANTENNA WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |
| ANTENNA GAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.4 dBi (high band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.2 dBi (high band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | 17.4 dBi (high band)<br>120 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |
| AZIMUTH<br>RADIATION CENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120 ·<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120 °<br>88 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| ANTENNA TIP HEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | 92'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| MAGNETIC DECLINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| MECHANICAL DOWNTILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | 0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |
| SCPA/MCPA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| MCPA MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| HATCHDI ATE DOWED (Watte)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| HATCHPLATE POWER (Watts)<br>ERP (Watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| HATCHPLATE POWER (Watts)<br>ERP (Watts)<br>NARROW BAND LLC (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| HATCHPLATE POWER (Watts) ERP (Watts) ANARROW BAND LLC (QTY/MODEL) RRH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 850 RRUS11/1900 RRUS12/1900 RRUS-A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 700 RRUS-E2/850 RRUS11/WCS RRUS32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | 700 RRUS11/1900 RRUS12/1900 RRUS-A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| HATCHPLATE POWER (Watts) ERP (Watts) NARROW BAND LLC (QTY/MODEL) RRH MAALNA (TYPE/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 850 RRUS11/1900 RRUS12/1900 RRUS-A2 CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700 RRUS-E2/850 RRUS11/WCS RRUS32<br>CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | 700 RRUS11/1900 RRUS12/1900 RRUS-A2 CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |
| HATCHPLATE POWER (Waits) ERP (Watts) NARROW BAND LLC (QTV/MODEL) RRH TIMA/LNA (TYPE/MODEL) CLUBERAT INJECTIONS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
| HATCHYLAIF EPOWER (WAITS) PARAROW BAND LLC (QTY/MODEL) RRH  ITMA/LNA (TYPE/MODEL) LURRENT INICETORS FOR TMA LURRENT INICETORS FOR TMA LURRENT INICETORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCI - TMABPDB7823VG12A x 2<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     | CCI - TMABPDB7823VG12A x 2 n/a n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |
| CURRENT INJECTORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCI - TMABPDB7823VG12A x 2<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |
| CURRENT INJECTORS FOR TMA CURRENT INJCTR POWER CABLE ANTENNA SHARING KIT? BAS Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCI - TMABPDB7823VG12A x 2 n/a n/a n/a n/a n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2 n/a n/a n/a n/a n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |
| CURRENT INJECTORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaelus DBC2055F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  n/a  4 / Kaelus DBC2055F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaelus DBC205F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
| CURRENT INJECTORS FOR TMA CURRENT INJECT POWER CABLE MATTENNA SHARING KIT? BAS Filter POPILEZER (TY/MODEL) DUPLEXER (CTY/MODEL) UNGER ARRESTOR (CTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCI - TMABPDB7823VG12A x 2  N/a  N/a  N/a  N/a  N/a  2 / Kaelus DBC2055F1V1-2  N/a  2 / Andrew APTDC-BDFDM-DBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2 n/a n/a n/a n/a n/a n/a 4 / Kaebu BBC2055F1V1-2 n/a 8 / Andrew APTDC-BBFDM-DBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaelus DBC2055F1V1-2  n/a  6 / Andrew APTDC-BDFDM-DBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |
| CURRENT INJECTORS FOR TMA CURRENT INJECTR POWER CABLE ANTENNA SHARING KIT? BAS Filter DIPLEXER (QTY/MODEL) DUPLEXER (QTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaelus DBC2055F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  n/a  4 / Kaelus DBC2055F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaelus DBC205F1V1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
| CURRENT INJECTORS FOR TMA CURRENT INJECT POWER CABLE MATTENNA SHARING KIT? BAS Filter POPILEZER (TY/MODEL) DUPLEXER (CTY/MODEL) UNGER ARRESTOR (CTY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaelus DBC2056F1V1-2  n/a  2 / Andrew APTDC-GFF0M-DBW  n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  n/l/a  n/l/a  n/l/a  n/l/a  n/l/a  n/l/a  n/l/a  4 / Kashus DBC25FF1V-2  n/l/a  8 / Andrew APTDC-BDFDM-DBW  n/l/a  n/l/a  n/l/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | CCI - TMABPDB7823VG12A x 2 n/s n/s n/s n/s n/s n/s 2 / Keelus DBC2055F1V1-2 n/s 6 / Andrew APTIC-BFDM-DBW n/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |
| CURRENT INJECTORS FOR TMA CURRENT INJECT ROWER CABLE ANTENNA SHARING KIT? BAS Filter  DUPLEXER (CITY/MODEL)  DUPLEXER (CITY/MODEL)  SURGE ARRESTOR (CITY/MODEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  N2  N3  N3  N3  2 / Kaelus DBC2055F1V1-2  2 / Andrew APTDC-BDF DM-DBW  N3  CCU - Kathrein 880 10006  Section 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kaelus DBC2595FV1-2  *** *** *** *** *** *** *** *** ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MATION - GAMMA                                                      | CCI - TMABPDB7823VG12A x 2  n/ia  n/ia  n/ia  n/ia  n/ia  n/ia  2 / Kaelsun DBC5055F1V1-2  WC205F1V1-2  NC205F1V1-2  NC205 |                                                            |
| CURRENT NILCTORS FOR TMA CURRENT NILCT POWER CABLE MATERNA SHARRIS KIT AAS FIRE* DIPLEXER (TOTYMODEL) DUPLEXER (TOTYMODEL) DUPLEXER (TOTYMODEL) SURGE ARRESTOR (GTYMODEL) CO ELOCK (CTYMODEL) RET EQUIPMENT (GTYMODEL) 900 POU FOR TIMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCI - TMA8PDB7823VG12A x 2  // NB  // NB  // NB  // NB  // NB  // Kaeku DBC2095F1V1-2  // NB  // YAEW  // YAEW | CCI - TMABPDB7823VG12A x 2  n/ls n/ls n/ls n/ls n/ls 4 / Kaesus DBC255F1V1-2 n/ls 8 / Andrew APTDC-80FDM-DBW n/ls n/ls n/ls C-NEWPROPOSED SECTOR/CELL INFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HATTON - GAMMA ANTENNA 3 GAM HART (SEG / 1900) or                   | CCI - TMABPDB7823VG12A x 2  n/s  n/s  n/s  n/s  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANTENNA S.                                                 |
| LUBERTY INICTORS FOR TMA LUBERTY INICT POWER CABLE NYTEMAS SHARING SIT? ASS FIRE*  PIPELYER GOTYMODEL  UNDERER (GITYMODEL)  SURGE ARRESTOR (GITYMODEL)  SURGE ARRESTOR (GITYMODEL)  SURGE COLOCK (GITYMODEL)  SUR EQUIPMENT (GITYMODEL)  900 POU FOR TIMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCI - TMABPDB7823VG12A x 2  NB  NB  NB  2 / Kaeba DBC2056F1V1-2  2 / Kaeba DBC2056F1V1-2  NB  2 / Andrew APTDC-BDFDM-DBW  NB  CCU - Kathenia 80 10005  Section 16  ANTENNA 1  GSM_UMTS (850 / 1300) or  LTC(700 / AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCI - TMABPDB7823VG12A x 2  nla  nla  nla  nla  nla  nla  nla  4 / Kanku DBC2055FV1-2  nla  8 / Andew APTOC SDF0M-DBW  nla  nla  C- NEWIPROPOSED SECTORIGEEL INFORM  MATISMA?  GSM, UMTS (SS) (1900) or  LT (200 / AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaelus DBC2055FVI-2  1 / Andrew APTDC-BDFDM-DBW  n/a  ANTENNA 4  GSM, UMTS (SBO / 1900) or  LTE (700 / AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GSM, UMTS (850 / 1900) or                                  |
| LUBERTY INICTORS FOR TMA LUBERTY INICT POWER CABLE NYTEMAS SHARING SIT? ASS FIRE*  PIPELYER GOTYMODEL  UNDERER (GITYMODEL)  SURGE ARRESTOR (GITYMODEL)  SURGE ARRESTOR (GITYMODEL)  SURGE COLOCK (GITYMODEL)  SUR EQUIPMENT (GITYMODEL)  900 POU FOR TIMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCI - TMABPDB7823VG12A x 2  NB  NB  NB  2 / Kaeba DBC2056F1V1-2  2 / Kaeba DBC2056F1V1-2  NB  2 / Andrew APTDC-BDFDM-DBW  NB  CCU - Kathenia 80 10005  Section 16  ANTENNA 1  GSM_UMTS (850 / 1300) or  LTC(700 / AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCI - TMABPDB7823VG12A x 2  n/la  n/la  n/la  n/la  n/la  4 / Kaelus BBC2555F1V1-2  n/la  8 / Andrew APTDC-BDFDM-DBW  n/la  8 / Andrew APTDC-BDFDM-DBW  n/la  n/la  CC - NEWIPROPOSED SECTIONICELL INFORM  ANTENNA 2  GM, UMTS (850 / 1900) or  TELE (100 / AWS). TELE  TELE (100 / AWS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MATION - GAMMA ANTENNA 3 GSM, UNITS (850 / 1900) or LTE (700 / AWS) | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kaelus DBC2055F1V1-2  n/a  6 / Andrew APTDC_BBFDM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AMS)  TSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANTENNA 5<br>GSM, JUMTS (850 / 1900) or<br>LTE (700 / AWS) |
| LUBERTY INICTORS FOR TMA LUBERTY INICT POWER CABLE NYTEMAS SHARING SIT? ASS FIRE*  PIPELYER GOTYMODEL  UNDERER (GITYMODEL)  SURGE ARRESTOR (GITYMODEL)  SURGE ARRESTOR (GITYMODEL)  SURGE COLOCK (GITYMODEL)  SUR EQUIPMENT (GITYMODEL)  900 POU FOR TIMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCI - TMABPDB7823VG12A x 2  1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a 1 Kaekus D8C2056F1Vt-2 4 / Kaekus D8C2056F1Vt-2 8 / Andrew AFTDC-BDFDM-DBW n/a n/a n/a n/a ANTEKNA 2 GSM, UMTS (SSØ / 1900) or LTE (700 / WKS) TBD TBD TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaehun DBC2055F1VI-2  2 / Kaehun DBC2055F1VI-2  6 / Andrew APTDC-BDF DM-DBW  n/a  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD  TE-78  TBD  TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GSM, UMTS (850 / 1900) or                                  |
| LUBERTH INICETORS FOR TMA  LUBERTH INICETOR FOR TMA  LUBERTH INICETOR POWER CABLE  MITEMAN SHARING SIT?  ASS FIRER  DRILLYRE (GTYMODEL)  DRILLYRE (GTYMODEL)  DRILLYRE (GTYMODEL)  SE BLOCK (GTYMODEL)  SE BLOCK (GTYMODEL)  SE FEGURINANT (GTYMODEL)  SE FEGURINANT (GTYMODEL)  SOD DU FOR TMAS  ANTENNA CONFIG (FROM BACK):  DUNCO  FEGURINA STATEMAN SHARING  SECHOLOGY  FEGURINA STATEMAN SHARING  SECHOLOGY  FEGURINA STATEMAN SHARING  SECHOLOGY  FEGURINA SHARING  FEGURINA SHA | CCI - TMABPDB7823VG12A x 2  1/8  1/8  1/8  1/8  2 / Kaehu D D23055F1V1-2  2 / Kaehu D23055F1V1-2  1/8  2 / Andrew APTDC-8DF0M-DBW  1/8  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1900) or  LTE(700 / AMS)  10  LTE(700 / AMS)  10  LTE(700 / AMS)  11  LTE(700 / AMS)  11  LTE(700 / AMS)  12  LTE(700 / AMS)  13  LTE(700 / AMS)  14  15-65F SUM-SCOPE / TED  4 / 1-5-65F SEULH-BH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kadeus DBC2355F1V-2 8 / Andrews AFTDC.3DFDM-D8W n/a n/a n/a n/a C-NEW/PROPOSED SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (SSØ / 1900) or LTE (700 / AWS) TBD TEC (180 / TBD) 4 / 1-5/8* Comméscage / TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaellus DBC.2055F1V1-2  2 / Kaellus DBC.2055F1V1-2  6 / Andrew APTDC-BBF DM-DBW  n/a  n/a  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD  LTE SB  1 / 1-56° Commiscope / TBD 1  H / 1-56° Commiscope / TBD 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GSM, UMTS (850 / 1900) or                                  |
| LUBERTY INICTORS FOR TMA  LUBERTY INICT FOWER CASE  INTERNA SHARING ST?  AS FIRE  PIPLEXE RIGTY/MODELS  DUPLEXER (GTY/MODELS)  LUBER ARRESTOR (GTY/MODELS)  LUBERT A | CCI - TMABPDB7823VG12A x 2  1/8  1/8  1/8  1/8  2 / Kaehu D D23055F1V1-2  2 / Kaehu D23055F1V1-2  1/8  2 / Andrew APTDC-8DF0M-DBW  1/8  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1900) or  LTE(700 / AMS)  10  LTE(700 / AMS)  10  LTE(700 / AMS)  11  LTE(700 / AMS)  11  LTE(700 / AMS)  12  LTE(700 / AMS)  13  LTE(700 / AMS)  14  15-65F SUM-SCOPE / TED  4 / 1-5-65F SEULH-BH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kadeus DBC2355F1V-2 8 / Andrews AFTDC.3DFDM-D8W n/a n/a n/a n/a C-NEW/PROPOSED SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (SSØ / 1900) or LTE (700 / AWS) TBD TEC (180 / TBD) 4 / 1-5/8* Comméscage / TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaellus DBC.2055F1V1-2  2 / Kaellus DBC.2055F1V1-2  6 / Andrew APTDC-BBF DM-DBW  n/a  n/a  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD  LTE SB  1 / 1-56° Commiscope / TBD 1  H / 1-56° Commiscope / TBD 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GSM, UMTS (850 / 1900) or                                  |
| LUBERTH TRICTORS FOR TMA  LUBERTH TRICTORS FOR TMA  LUBERTH TRICTOR POWER CABLE  MYTENAN AFARRING SIT?  ASS FIREE  DIPLLYER (GT/MODGEL)  DUPLLER (GT/MODGEL)  LUBERT (MYTENAN COLUMNOPOL)  SINGE ARRESTON (LOPAL)  STRETCHIMMENT (GT/MODGEL)  STRETCHIMMENT (GT/MODGEL)  STRETCHIMMENT (GT/MODGEL)  STRETCHIMMENT (GT/MODGEL)  STRETCHIMMENT (GT/MODGEL)  STRETCHIMMENT (GT/MODGEL)  TOTAL COLUMNOPOLITY  TOTAL COLUMNOPOLITY  STRETCHIMMENT (GT/MODGEL)  STRETCHIMMENT (GT/MODGEL)  MYTENAN AMAZE - MODGEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kaehu Dic2055F1V1-2  2 / Kaehu Dic2055F1V1-2  2 / Andrew APTDC-BDFDM-DBW  AVA  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UNTS (850 / 1900) or  LTE(700 / AWS)  TB UNTS - BB / 115 - BB /  4 / 1-58° CommScope / TBD /  HPA-58R BUU-HB  CCU - 93 x 15 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kaekis BBC2355F1Vt-2 8 / Andrew AFTDC.3DFDM-D8W n/a n/a n/a n/a n/a CSN_DB7DG-DB7DM-D8W n/a n/a n/a GSN_DB7DG-DB7DM-D8W TET GB0 / AWS) TBD TET GB0 / AWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Kaellus DBC.2055F1V1-2  2 / Kaellus DBC.2055F1V1-2  6 / Andrew APTDC-B6F 0M-06W  n/a  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD  LTE-UB  1/1-5/8" Commiscope/ TBD /  LTE-UB  CCI  98 x 15 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GSM, UMTS (850 / 1900) or                                  |
| LUBERTY INICTORS FOR TMA  LUBERTY INICTORS FOR TMA  LUBERTY INICTOR POWER CABLE  INITENAN SHARING INIT?  ASS FIBER  PIPLEXE RICTYMODELL  LUBERT COUMMANT (DTYMODELL)  SHORT COUMMANT (DTYMODELL)  RICTYMODELL  ANTENNA CONFIG (FROM BACK):  TURRO  FECHNOLOGY  VECHNOLOGY  VEC | CCI - TMABPOB7823VG12A x 2  n/a  n/a  n/a  2 / Kaelsa DisC2055F1V1-2  2 / Andrew APTDC-8DFDM-DBW  n/a  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1000) or  LTE (700 / AWS)  TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kasius DBC2595F1V1-2  ***Na ***Na ***Na ***Na ***Na ***Na ***Na **Na ***Na **Na ***Na **Na ***Na ***Na ***Na ***Na ***Na ***Na ***Na **Na | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaelun DBC2055F1V1-2  W/a  6 / Acutera APTI-B BDF DM-DBW  n/a  ANTENNA 4  GSM, MMTS (850 / 1900) or  LTE (700 / AWS)  TBD  LTE-DB  4 / 1-5/8* C-Formit Scope / TBD '  HPA-65/R-BULH-18  93 x 15 x 7  8 68  17 4 08 (high band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                  |
| LUBRENT NICE OF NORTH AND LUBRENT NICE OF NOWER CABLE  WITENAN STARRING ST?  ASF FIRE?  DELLIKE (GIT/MODES)  DELLI | CCI - TMABPOBREZ3VG12A x 2  n/a  n/a  n/a  2 Keakes DBC2058FVI-2  2 Kades DBC2058FVI-2  n/a  2 Kades DBC2058FVI-2  n/a  2 I Andrew APTDC-BDF DM-DBW  n/a  CCU - Katheria Bos 10006  SScation 16  ANTENNA 1  GSM, UNTS (859 / 1300) or  LTE(700 / AWS)  TBD  UNTS-DB / LTE HB  4 / 1-5/6* CommScope / TBD  UNTS-DB / LTE HB  1 / 1-5/6* CommScope / TBD  CSM / 1 / 5/6* CommScope / TBD  1 / 1 / 5/6* CommScope / TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a n/a n/a n/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/ia  n/ia  n/ia  2 / Kaebur Dix2005F1VI-2  2 / Kaebur Dix2005F1VI-2  6 / Andrew APTDC-BDF0M-DBW  n/ia  ANTERNA 4  GSM, UMTS (802) (1900) or  11E / 10D / AWS)  TBD  LTE-D0 / AWS)  4 / 1-5/9* CommScope / TBD*  LTE-D0 / AVSR-DD / BD /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                  |
| LUBERTH TRUCTORS FOR TMA  LUBERTH TRUCT POWER CARLE  WITENIA SHARING UT?  AS FIREF  PREXE (TOYMODEL)  LUBERT RISTS (TOYMODEL)  LUBERT RISTS (LOYMODEL)  LUBERT RISTS (LOYMO | CCI - TMABPOB7823VG12A x 2  n/a  n/a  n/a  2 / Kaelsa DisC2055F1V1-2  2 / Andrew APTDC-8DFDM-DBW  n/a  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1000) or  LTE (700 / AWS)  TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kasius DBC2595F1V1-2  ***Na ***Na ***Na ***Na ***Na ***Na ***Na **Na ***Na **Na ***Na **Na ***Na ***Na ***Na ***Na ***Na ***Na ***Na **Na | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaelun DBC2055F1V1-2  W/a  6 / Acutera APTI-B BDF DM-DBW  n/a  ANTENNA 4  GSM, MMTS (850 / 1900) or  LTE (700 / AWS)  TBD  LTE-DB  4 / 1-5/8* C-Formit Scope / TBD '  HPA-65/R-BULH-18  93 x 15 x 7  8 68  17 4 08 (high band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                  |
| LUBERT INICTORS FOR TMA  LUBERT INICTOR POWER CARLE  WITENNA SHARRING UT?  MS FIRE?  MPURKER (GITYMODEL)  LUBERT RICHT POWER CARLE  LUBERT RICHT POWER CARLE  LUBERT RICHT POWER CARLE  LUBERT COUNTY COUNTY  LUBERT COU | CCI - TMABPDB7823VG12A x 2  NB  NB  NB  2 / Kaeba DBC2058F1V1-2  NB  2 / Andrew APTDC-BDFDM-DBW  NB  2 / Andrew APTDC-BDFDM-DBW  NB  CCU - Kathera D80 10006  Section 16  ANTENNA 1  GSM, UMTS (850 / 1300) or  LTC (700 / ANS)  TBD  UMTS-DB / LTE RB  4 / 1-58° CommScope / TBD  UMTS-DB / LTE RB  1 / 1-58° CommScope / TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CCI - TMABPDB7823VG12A x 2  nla nla nla nla nla nla nla nla nla nl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Keelus DBC2058FVI-2  n/a  6 / Andrew APTDC-BDF0M-DBW  n/a  n/a  ANTENNA 4  GSM, UMTS (80 / 1900) or  LTE(70 / AWS)  TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GSM, UMTS (850 / 1900) or                                  |
| LUBERTH NICTORS FOR TMA  LUBERTH NICTOR OWNER CARLE  NITEMAN SHARRING HIT?  AS FIRER  PRILYER GITT/MODELS  PRILYER GITT/MODELS  SE BLOCK (GITY/MODELS)  SE BLOCK (GITY/MODELS)  SE BLOCK (GITY/MODELS)  SE BLOCK (GITY/MODELS)  SE CONTROL OWNER  SE C | CCI - TMABPOB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D3055F1V1-2  n/a  2 / Andrew APTDC-8BP DAND DW  n/a  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1900) or  IEE (700 / AwS)  IB MISS DB / IEE HB  4 / 1-546* Commisscope / TBD  1 / HPA-65R-8BU-HB  CSC    93 x 15 x 7  68  174 4 BB (high band)  240 1  88  92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kadeus DBC.2056F1V1-2 8 / Andrews AFTDC.30F0M-D8W n/a n/a n/a n/a n/a n/a n/a C-NEW/PROPOSED SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (S80 / 1900) or LTE (780 / AWS) TBD TED 4 / 1-5/8° CommScope / TBD OPA-68F1.CUJ-HB CCI GSX 15 x 7 95 17.4 dBb (high band) 240 881 92 0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaellus DBC.2055F1V1-2  2 / Kaellus DBC.2055F1V1-2  6 / Andrew APTDC-BBF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD LTE JB  LTE JB  4 / 1-6/8* Commiscope / TBD '  HPA 65R SBUJ-HB  CSCI  93 x 15 x 7  68  17.4 dB (high band)  240 '  88  92  0 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GSM, UMTS (850 / 1900) or                                  |
| LUBERTH NICTORS FOR TMA  LUBERTH NICTOR OWNER CARLE  NITEMAN SHARRING HIT?  AS FIRER  PRILYER GITT/MODELS  PRILYER GITT/MODELS  SE BLOCK (GITY/MODELS)  SE BLOCK (GITY/MODELS)  SE BLOCK (GITY/MODELS)  SE BLOCK (GITY/MODELS)  SE CONTROL OWNER  SE C | CCI - TMABPDB7823VG12A x 2  NB  NB  NB  2 / Kaeba DBC2058F1V1-2  NB  2 / Andrew APTDC-BDFDM-DBW  NB  2 / Andrew APTDC-BDFDM-DBW  NB  CCU - Kathera D80 10006  Section 16  ANTENNA 1  GSM, UMTS (850 / 1300) or  LTC (700 / ANS)  TBD  UMTS-DB / LTE RB  4 / 1-58° CommScope / TBD  UMTS-DB / LTE RB  1 / 1-58° CommScope / TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CCI - TMABPDB7823VG12A x 2  nla nla nla nla nla nla nla nla nla nl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Keelus DBC2058FVI-2  n/a  6 / Andrew APTDC-BDF0M-DBW  n/a  n/a  ANTENNA 4  GSM, UMTS (80 / 1900) or  LTE(70 / AWS)  TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GSM, UMTS (850 / 1900) or                                  |
| LUBERT NICTOR FOR TANA  LUBERT NICTOR OWNER CARLE  WITENAN SHARRING KIT?  AS FIRER  BULLYRI ERIT/MODELL  BULLYRI E | CCI - TMABPOB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D3055F1V1-2  n/a  2 / Andrew APTDC-8BP DAND DW  n/a  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1900) or  IEE (700 / AwS)  IB MISS DB / IEE HB  4 / 1-546* Commisscope / TBD  1 / HPA-65R-8BU-HB  CSC    93 x 15 x 7  68  174 4 BB (high band)  240 1  88  92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kadeus DBC.2056F1V1-2 8 / Andrews AFTDC.30F0M-D8W n/a n/a n/a n/a n/a n/a n/a C-NEW/PROPOSED SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (S80 / 1900) or LTE (780 / AWS) TBD TED 4 / 1-5/8° CommScope / TBD OPA-68F1.CUJ-HB CCI GSX 15 x 7 95 17.4 dBb (high band) 240 881 92 0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaellus DBC.2055F1V1-2  2 / Kaellus DBC.2055F1V1-2  6 / Andrew APTDC-BBF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD LTE JB  LTE JB  4 / 1-6/8* Commiscope / TBD '  HPA 65R SBUJ-HB  CSCI  93 x 15 x 7  68  17.4 dB (high band)  240 '  88  92  0 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GSM, UMTS (850 / 1900) or                                  |
| LUBERTY INICTORS FOR TMA  LUBERTY INICTORS FOR TMA  LUBERTY INICTOR POWER CABLE  INTERNA SHARING INT?  ASS FIBER  PREVER (FOTYMODEL)  LUBERT RESTOR (GITYMODEL)  LUBERT COMPANY  LUBERT RESTOR (GITYMODEL)  LUBERT COMPANY  | CCI - TMABPOB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D3055F1V1-2  n/a  2 / Andrew APTDC-8BP DAND DW  n/a  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1900) or  IEE (700 / AwS)  IB MISS DB / IEE HB  4 / 1-546* Commisscope / TBD  1 / HPA-65R-8BU-HB  CSC    93 x 15 x 7  68  174 4 BB (high band)  240 1  88  92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kadeus DBC.2056F1V1-2 8 / Andrews AFTDC.30F0M-D8W n/a n/a n/a n/a n/a n/a n/a C-NEW/PROPOSED SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (S80 / 1900) or LTE (780 / AWS) TBD TED 4 / 1-5/8° CommScope / TBD OPA-68F1.CUJ-HB CCI GSX 15 x 7 95 17.4 dBb (high band) 240 881 92 0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaellus DBC.2055F1V1-2  2 / Kaellus DBC.2055F1V1-2  6 / Andrew APTDC-BBF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD LTE JB  LTE JB  4 / 1-6/8* Commiscope / TBD '  HPA 65R SBUJ-HB  CSCI  93 x 15 x 7  68  17.4 dB (high band)  240 '  88  92  0 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GSM, UMTS (850 / 1900) or                                  |
| LUBRENT NICE OF FOR TWA  LUBRENT NICE FOWER CABLE  WITEMAN SHARING KIT?  AS FIRE!  DIFLEKE (RIT/MODEL)  DIFLEKE (RIT/MODEL)  DIFLEKE (RIT/MODEL)  DIFLEKE (RIT/MODEL)  DIFLEKE (RIT/MODEL)  SE BLOCK ( | CCI - TMABPOB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D3055F1V1-2  n/a  2 / Andrew APTDC-8BP DAND DW  n/a  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1900) or  IEE (700 / AwS)  IB MISS DB / IEE HB  4 / 1-546* Commisscope / TBD  1 / HPA-65R-8BU-HB  CSC    93 x 15 x 7  68  174 4 BB (high band)  240 1  88  92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kadeus DBC.2056F1V1-2 8 / Andrews AFTDC.30F0M-D8W n/a n/a n/a n/a n/a n/a n/a C-NEW/PROPOSED SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (S80 / 1900) or LTE (780 / AWS) TBD TED 4 / 1-5/8° CommScope / TBD OPA-68F1.CUJ-HB CCI GSX 15 x 7 95 17.4 dBb (high band) 240 881 92 0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaellus DBC.2055F1V1-2  2 / Kaellus DBC.2055F1V1-2  6 / Andrew APTDC-BBF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD LTE JB  LTE JB  4 / 1-6/8* Commiscope / TBD '  HPA 65R SBUJ-HB  CSCI  93 x 15 x 7  68  17.4 dB (high band)  240 '  88  92  0 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GSM, UMTS (850 / 1900) or                                  |
| LUBERT HINCTOPS FOR TMA  LUBERT HINCTOP DWIST CARE  WITENIA SARRING UT?  AS FIREF  BYELER (GTYMODEL)  LUBERT RISTS (GTYMO | CCI - TMABPOB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D23055F1V1-2  n/a  2 / Kaeka D D3055F1V1-2  n/a  2 / Andrew APTDC-8BP DAND DW  n/a  CCU - Kathren 860 10006  Section 16  ANTENNA 1  GSM_UMTS (850 / 1900) or  IEE (700 / AwS)  IB MISS DB / IEE HB  4 / 1-546* Commisscope / TBD  1 / HPA-65R-8BU-HB  CSC    93 x 15 x 7  68  174 4 BB (high band)  240 1  88  92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 4 / Kadeus DBC.2056F1V1-2 8 / Andrews AFTDC.30F0M-D8W n/a n/a n/a n/a n/a n/a n/a C-NEW/PROPOSED SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (S80 / 1900) or LTE (780 / AWS) TBD TED 4 / 1-5/8° CommScope / TBD OPA-68F1.CUJ-HB CCI GSX 15 x 7 95 17.4 dBb (high band) 240 881 92 0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaellus DBC.2055F1V1-2  2 / Kaellus DBC.2055F1V1-2  6 / Andrew APTDC-BBF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD LTE JB  LTE JB  4 / 1-6/8* Commiscope / TBD '  HPA 65R SBUJ-HB  CSCI  93 x 15 x 7  68  17.4 dB (high band)  240 '  88  92  0 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GSM, UMTS (850 / 1900) or                                  |
| LUBERT NICTOR FOR TAM  LUBERT NICTOR OWNER CARLE  WITEMAN SHARING HT?  AS FIRE?  BILLYER (RITYMODES)  BILLYER (RIT | CCI - TMABPOBREZIVGIZA x 2  NB  NB  NB  2 / Kaeka DBC2056FVI-2  NB  2 / Kaeka DBC2056FVI-2  NB  2 / Andrew APTOC-BDFDM-DBW  NB  CCU - Kathere 808 10006  CCU - Kathere 808 10006  CCU - Kathere 808 10009  CCU - Kathere 808 10009  TSD  SCREION 16  ANTENNA 1  SSM, UNTS (859 / 1300) or  LTC (700 / AWS)  TBD  UMTS-DB / LTE HB  4 / 1-5/9° CommScope / TBD  HPA-SSR BUU-HB  93 x 15 x 7  68  17.4 dBl (hgh band)  240 °  88  92 °  0 °  0 °  0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a n/a n/a n/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kaebur Dix2005F1V1-2  2 / Kaebur Dix2005F1V1-2  8 / Andrew APTDC-BDF0M-DBW  n/a  8 / ANTERNA 4  GSM, UNITS (820, 1990) or  11E / TBD / TBD  1 / TBD / TBD  1 / TBD / TBD  4 / 1-5/9* CommScope / TBD*  1 / HPA-SSR-BUU-HB  CSG / SV 7  9 / S 8  17.4 dBi (high band)  240 **  88 **  92 **  92 **  700 RRUS11/1900 RRUS12/1900 RRUS-A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GSM, UMTS (850 / 1900) or                                  |
| LUBERT NICTOR FOR TAM  LUBERT NICTOR OWNER CARLE  WITEMAN SHARING HT?  AS FIRE?  BILLYER (RITYMODES)  BILLYER (RIT | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a 2 / Keeks DBC2058*FV1-2 n/a 2 / Andrew APTDC-BDPDM-DBW n/a CCU - Kathren 860 10006 Stettlon 16 ANTENNA 1 1 SSM_UNTS_083 / 1500) or TBD TBD TBD UNTS_DB / LTE HB 4 / 1-5/8* CommScope / TBD HPA-65R BUU-HB CCI 93 x 15 x 7 17.4 BB (nigh band) 240 ² 0 ² 0 ² 0 ² 0 ° 0 ° 850 RRUS11/1900 RRUS12/1900 RRUS-A2 CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  nla nla nla nla nla nla nla nla nla nl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kashun DBC2055F1VI-2  2 / Kashun DBC2055F1VI-2  6 / Andrew APTDC-BDF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1990) or  LTE (700 / AWS)  TBD  LTE CB  4 / 1-5/8* CommScope / TBD*  HPA-56R BUU-HB  CGI  93 x 15 x 7  68 1  92 1  0 1  0 7  0 7  O RRUS11/1900 RRUS12/1900 RRUS-A2  CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GSM, UMTS (850 / 1900) or                                  |
| LUBERT NICTOR FOR TWA  LUBERT NICTOR POWER CABLE  WITEMAN SARRING UT?  AS FIRE?  BILLER (LUTYMODEL)  BOD POUTOR TMAS  BOT BOD FOR TMAS  BUTTEMAN CONFIG (FROM BACK):  TUTEMAN CONFIG (FROM BACK):  TUTEMAN AMERICAN  BUTTEMAN AMERICAN  WITEMAN AMER | CCI - TMABPOBREZIVGIZA x 2  NB  NB  NB  2 / Kaeka DBC2056FVI-2  NB  2 / Kaeka DBC2056FVI-2  NB  2 / Andrew APTOC-BDFDM-DBW  NB  CCU - Kathere 808 10006  CCU - Kathere 808 10006  CCU - Kathere 808 10009  CCU - Kathere 808 10009  TSD  SCREION 16  ANTENNA 1  SSM, UNTS (859 / 1300) or  LTC (700 / AWS)  TBD  UMTS-DB / LTE HB  4 / 1-5/9° CommScope / TBD  HPA-SSR BUU-HB  93 x 15 x 7  68  17.4 dBl (hgh band)  240 °  88  92 °  0 °  0 °  0 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a n/a n/a n/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  n/a  2 / Keelun GC2005F1V1-2  n/a  6 / Andrew APTIC-BDF0M-DBW  n/a  ANTENNA 4  GSM, UNTS (BSD / 1909) or  LTE (700 / AWS)  TBD  LTE (700 / AWS)  TBD  LTE-OB  4 / 1-5/8° CommScope / TBD '  HPA-SSR-BUU-HB  93 x 15 x 7  68  17.4 dBI (high band)  240 '  88 1  92 .  0 '  0 '  0 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GSM, UMTS (850 / 1900) or                                  |
| LUBERT NICTOR FOR TAM  LUBERT NICTOR OWNER CARLE  WITEMAN SHARING HT?  AS FIRE?  BILLYER (RITYMODES)  BILLYER (RIT | CCI - TMABPDB7823VG12A x 2  NB  NB  NB  12 / Kaeba DBC2056FVI-2  NB  2 / Kaeba DBC2056FVI-2  NB  2 / Andrew APTDC-BBFDM-DBW  NB  2 / Andrew APTDC-BBFDM-DBW  NB  CCU - Kathens 80 10006  Section 16  ANTENNA 1  GSM, UMTS (859 / 1300) or  LTC(700 / AWS)  TBD  UMTS-DB / LTE TBD  UMTS-DB / LTE HB  4 / 1-59° CommScope / TBD  17.4 dBi (hgh band)  240°  88  17.4 dBi (hgh band)  240°  88  0 °  0 °  0 °  0 °  0 °  0 °  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  n/a  n/a  A 1 Konda Nation 100  B 1 Andrew APTOC-3DPDM-DBW  n/a  n/a  8 1 Andrew APTOC-3DPDM-DBW  n/a  n/a  RIP NATION 100  CC - NEWIPROPOSE 100  TBD T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kashun DBC2055F1VI-2  2 / Kashun DBC2055F1VI-2  6 / Andrew APTDC-BDF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1990) or  LTE (700 / AWS)  TBD  LTE CB  4 / 1-5/8* CommScope / TBD*  HPA-56R BUU-HB  CGI  93 x 15 x 7  68 1  92 1  0 1  0 7  0 7  O RRUS11/1900 RRUS12/1900 RRUS-A2  CCI - TMABPDB7823VG12A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GSM, UMTS (850 / 1900) or                                  |
| LUBERT NICTOR FOR TWA  LUBERT NICTOR POWER CABLE  WITEMAN SARRING UT?  AS FIRE?  BILLER (LUTYMODEL)  BOD POUTOR TMAS  BOT BOD FOR TMAS  BUTTEMAN CONFIG (FROM BACK):  TUTEMAN CONFIG (FROM BACK):  TUTEMAN AMERICAN  BUTTEMAN AMERICAN  WITEMAN AMER | CCI - TMABPOBREZZVGIZA x 2  NB  NB  NB  2 / Kaebas DBC2095FV1-2  NB  2 / Kaebas DBC2095FV1-2  NB  2 / Andrew APTDC-BDFDM-DBW  NB  CCU - Kathren B00 10006  Section 16  ANTENNA 1  GSM, UNTS (859 / 1300) or  ITE / TBD  UNES CRITERION TBD  HPA-65RB UJ-HB  CCI  93 x 15 x 7  68  17 4 6B (hyb) band)  2 88  89 2 1  0 1  0 1  0 1  850 RRUS11/1900 RRUS12/1900 RRUS-A2  CCI - TMABPOBREZZVGIZA x 2  NB  NB  NB  NB  SORRUS11/1900 RRUS12/1900 RRUS-A2  CCI - TMABPOBREZZVGIZA x 2  NB  NB  NB  NB  NB  NB  NB  NB  NB  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCI - TMABPDB7823VG12A x 2  nla nla nla nla nla nla nla nla nla nl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaelas DBC2058*FVI-2  n/a  6 / Andrew APTDC-BDF0M-DBW  n/a  ANTENNA 4  GSM, UMTS (80 / 1900) or  LTE (70 / AWS)  TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GSM, UMTS (850 / 1900) or                                  |
| LUBRENT NICEORS FOR TMA  LUBRENT NICEORS FOR TMA  MITTERNA SHARRING ST?  ASA FIRE!  DILLEKE (EUT/MODEL)  DILLEKE (EUT/MODEL)  DILLEKE (EUT/MODEL)  DILLEKE (EUT/MODEL)  SINGE ABRISTOR (EUT/MODEL)  SUBBERT INSECTORS FOR TMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCI - TMABPOBREZ3VG12A x 2  n/a  n/a  n/a  n/a  2 / Kaeka DBC2058FVI-2  2 / Andrew APTDC-BPCPM-DBW  n/a  2 / Andrew APTDC-BPCPM-DBW  n/a  2 / Andrew APTDC-BPCPM-DBW  n/a  CCU - Katheria Seo 10006  Seetdon 16  ANTENNA 1  GSM, UMTS (859 / 1000) or  LTE(700 / AWS)  TBD  UMTS-DB / LTE HB  4 / 1-5/6° CommScope / TBD /  HPA-6SR-BUU-HB  COL 7  9 / 240 °  86  92 °  0 °  0 °  0 °  0 °  0 °  0 °  2 / Kaeka BR-23VG12A x 2  n/a  n/a  2 / Kaeka BC-2058FVI-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCI - TMABPDB7823VG12A x 2  nia nia nia nia nia nia nia nia nia ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/ia  2 / Kashus Dis2005F1V1-2  2 / Kashus Dis2005F1V1-2  n/ia  n/ia  ANTENNA 4  GSM, UMTS (830 / 1900) or  LTE (700 / AWS)  TBD  LTE DB  4 / 1-5/8* CommScope / TBD'  HPA-SSR BUU-H8  CSI  17.4 dBi flight band)  240 *  88 *  92 *  0 *  0 *  0 *  700 RRUS11/1900 RRUS12/1900 RRUS-A2  CCI - TMABPDB7823VG12A x 2  N/ia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GSM, UMTS (850 / 1900) or                                  |
| LUBRENT NICE OF FOR TWA  LUBRENT NICE TO POWER CABLE  WITENAN SHARING KIT?  AS FIRE?  DILLYRE (RIT/MODEL)  DILLYRE (RIT/MODEL)  DILLYRE (RIT/MODEL)  DILLYRE (RIT/MODEL)  SERVICE (RIT/MODEL)  RET EGUIPMENT (RIT/MODEL)  SER EGUIPMENT (RIT/MODEL)  SERVICE SE | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kaeka DB62058*FV1-2  2 / Andrew APTO-GBPDM-DBW  n/a  2 / Kaeka DB62058*FV1-2  2 / Andrew APTO-GBPDM-DBW  n/a  CCU - Kathren 860 10006  Stetilon 16  ANTENNA 1 I  SSM, UMTS (859 / 1900) or  TBD TBD TBD  UMTS-DB / LTE HB  4 / 1-5/8* CommScope / TBD  HPA-65R BUU-HB  CCI  95 x 15 x 7  17, 4 BB inj6h band)  2 40 °  9 °  0 °  0 °  0 °  17. 4 BB inj6h band)  2 88  92 '  0 °  0 °  0 °  17. 4 BB inj6h band)  2 88  92 '  0 °  0 °  17. 4 BB inj6h band)  2 40 °  2 40 °  2 40 °  2 40 °  2 °  2 °  2 °  2 °  2 °  2 °  2 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  nla nla nla nla nla nla nla nla nla nl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kaelhun DBC2055F1V1-2  6 / Andrew APTDC-BDF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD  LTE (700 / AWS)  TBD  4 / 1-5/8* Commiscope / TBD '  LTE ASR BUU-HB  CSCI  93 x 15 x 7  88 1  92 2  0 7  0 7  700 RRUS11/1900 RRUS12/1900 RRUS-A2  CCI - TMABPDB7823VG12A x 2  n/a  n/a  1/ Keelun DBC2055F1V1-2  n/a  1/ Keelun DBC205F1V1-2  n/a  1/ Keelun DBC205F1V1-2  n/a  1/ Keelun DBC205F1V1-2  n/a  1/ Keelun DBC205F1V1-2  n/a  1/ Keelun DBC205F1V1- | GSM, UMTS (850 / 1900) or                                  |
| CURRENT INICETORS FOR TMA  CURRENT INICETORS FOR TMA  CURRENT INICETORS FOR TMA  ANTERNAS SHARRING RET?  BASE FIRE  DIPLEXER (TOTYMODEL)  DUPLEXER (TOTYMODEL)  DUPLEXER (TOTYMODEL)  THE FEGUIPMENT (TOTYMODEL)  SET EGUIPMENT (TOTYMODEL)  SET EGUIPMENT (TOTYMODEL)  SET EGUIPMENT (TOTYMODEL)  TECHNOLOGY  TEC | CCI - TMABPDB7823VG12A x 2  NB  NB  NB  12 / Kaeba DBC2056FVI-12  NB  2 / Andrew APTDC-BIPDM-DBW  NB  2 / Andrew BR 10005  CCU - Katheni 80 10005  Section 16  ANTENNA 1  GSM, UMTS (850 / 1300) or  LTC(700 / AWS)  TBD  TBD  UMTS-DB / LTE RB  4 / 1-50° Commiscope / TBD  17.4 dBi (high band)  240 '  88  17.4 dBi (high band)  240 '  89  CCI - TMABPDB7823VG12A x 2  NB  NB  NB  NB  NB  NB  NB  NB  NB  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCI - TMABPDB7823VG12A x 2  n/a n/a n/a n/a n/a n/a n/a n/a n/a n/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  n/a  n/a  2 / Keelun GC2005F1V1-2  n/a  6 / Andrew APTDC-BDF M-DBW  n/a  ANTENNA 4  GSM, UNTS (BSD / 1900) or  LTE (700 / AWS)  TBD  LTE-OB  4 / 1-59° CommScope / TBD'  HPA-SSR-BUU-H8  93 x 15 x 7  68  17.4 dBl (high band)  240°  881  92  0 °  0 °  0 °  700 RRUS11/1900 RRUS12/1900 RRUS-A2  CCI - TMABPDB7822VG12A x 2  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GSM, UMTS (850 / 1900) or                                  |
| LUBRENT NICE OF FOR TWA  LUBRENT NICE TO POWER CABLE  WITENAN SHARING KIT?  AS FIRE?  DILLYRE (RIT/MODEL)  DILLYRE (RIT/MODEL)  DILLYRE (RIT/MODEL)  DILLYRE (RIT/MODEL)  SERVICE (RIT/MODEL)  RET EGUIPMENT (RIT/MODEL)  SER EGUIPMENT (RIT/MODEL)  SERVICE SE | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kaeka DB62058*FV1-2  2 / Andrew APTO-GBPDM-DBW  n/a  2 / Kaeka DB62058*FV1-2  2 / Andrew APTO-GBPDM-DBW  n/a  CCU - Kathren 860 10006  Stetilon 16  ANTENNA 1 I  SSM, UMTS (859 / 1900) or  TBD TBD TBD  UMTS-DB / LTE HB  4 / 1-5/8* CommScope / TBD  HPA-65R BUU-HB  CCI  95 x 15 x 7  17, 4 BB inj6h band)  2 40 °  9 °  0 °  0 °  0 °  17. 4 BB inj6h band)  2 88  92 '  0 °  0 °  0 °  17. 4 BB inj6h band)  2 88  92 '  0 °  0 °  17. 4 BB inj6h band)  2 40 °  2 40 °  2 40 °  2 40 °  2 °  2 °  2 °  2 °  2 °  2 °  2 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCI - TMABPDB7823VG12A x 2  nla nla nla nla nla nla nla nla nla nl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSM, UMTS (850 / 1900) or                                           | CCI - TMABPDB7823VG12A x 2  n/a  n/a  n/a  2 / Kaelhun DBC2055F1V1-2  6 / Andrew APTDC-BDF DM-DBW  n/a  ANTENNA 4  GSM, UMTS (850 / 1900) or  LTE (700 / AWS)  TBD  LTE (700 / AWS)  TBD  4 / 1-5/8* Commiscope / TBD '  LTE ASR BUU-HB  CSCI  93 x 15 x 7  88 1  92 2  0 7  0 7  700 RRUS11/1900 RRUS12/1900 RRUS-A2  CCI - TMABPDB7823VG12A x 2  n/a  n/a  1/ Keelun DBC2055F1V1-2  n/a  1/ Keelun DBC205F1V1-2  n/a  1/ Keelun DBC205F1V1-2  n/a  1/ Keelun DBC205F1V1-2  n/a  1/ Keelun DBC205F1V1-2  n/a  1/ Keelun DBC205F1V1- | GSM, UMTS (850 / 1900) or                                  |



## HEXPORT Multi-Band ANTENNA

## Model HPA-65R-BUU-H8



## Hexport Multi-Band Antenna Array

## **Benefits**

- Includes WCS Band
- Reduces tower loading
- Frees up space for tower mounted E-nodes
- Single radome with six ports
- All Band design simplifies radio assignments
- Sharp elevation beam eases network planning

The CCI Hexport Multi-Band Antenna Array is an industry first 6-port antenna with full WCS Band Coverage. With four high band ports and two low band ports, our hexport antenna is ready for 4X4 high band MIMO.

Modern networks demand high performance, consequently CCI has incorporated several new and innovative design techniques to provide an antenna with excellent side-lobe performance, sharp elevation beams, and high front to back ratio.

Multiple networks can now be connected to a single antenna, reducing tower loading and leasing expense, while decreasing deployment time and installation cost.

Full band capability for 700 MHz, Cellular 850 MHz, PCS 1900 MHz, AWS 1710/2170 MHz and WCS 2300 MHz coverage in a single enclosure.

#### **Features**

- ♦ High Band Ports include WCS Band
- ♦ Four High Band ports with two Low Band ports in one antenna
- ♦ Sharp elevation beam
- ♦ Excellent elevation side-lobe performance
- Excellent MIMO performance due to array spacing
- ♦ Excellent PIM Performance
- ♦ A multi-network solution in one radome

## **Applications**

- ♦ 4x4 MIMO on High Band and 2x2 MIMO on Low Band
- ♦ Adding additional capacity without adding additional antennas
- ♦ Adding WCS Band without increasing antenna count





## HEXPORT Multi-Band ANTENNA

## Model HPA-65R-BUU-H8

## **HPA-65R Multi-Band Antenna Electrical Specifications**

| Carrier on Dagge                      | 2 X Low Band Ports which cover<br>the full range from 698-894 MHz |              | 4 X High Band Ports which cover the full range from 1710-2360 MHz |              |                                |              |  |
|---------------------------------------|-------------------------------------------------------------------|--------------|-------------------------------------------------------------------|--------------|--------------------------------|--------------|--|
| Frequency Range                       | 698-806 MHz                                                       | 824-894 MHz  | 1850-1990 MHz                                                     |              | 1710-1755/2110-2170<br>MHz 230 |              |  |
| Gain                                  | 15.3 dBi                                                          | 16.2 dBi     | 17.1 dBi                                                          | 16.3 dBi     | 17.4 dBi                       | 17.7 dBi     |  |
| Azimuth Beamwidth (-3dB)              | 65°                                                               | 61°          | 62°                                                               | 68°          | 64°                            | 60°          |  |
| Elevation Beamwidth (-3dB)            | 10.1°                                                             | 8.4°         | 5.6°                                                              | 6.2°         | 5.0°                           | 4.5°         |  |
| Electrical Downtilt                   | 2° to 10°                                                         | 2° to 10°    | 0° to 8°                                                          | 0° to 8°     | 0° to 8°                       | 0° to 8°     |  |
| Elevation Sidelobes (1st Upper)       | < -17 dB                                                          | < -17 dB     | < -19 dB                                                          | < -18 dB     | < -18 dB                       | < -17 dB     |  |
| Front-to-Back Ratio @180°             | > 29 dB                                                           | > 28 dB      | > 35 dB                                                           | > 35 dB      | > 35 dB                        | > 35 dB      |  |
| Front-to-Back Ratio over ± 20°        | > 28 dB                                                           | > 27 dB      | > 28 dB                                                           | > 27 dB      | > 28 dB                        | > 28 dB      |  |
| Cross-Polar Discrimination (at Peak)  | > 24 dB                                                           | > 20 dB      | > 25 dB                                                           | > 25 dB      | > 25 dB                        | > 25 dB      |  |
| Cross-Polar Discrimination (at ± 60°) | > 16 dB                                                           | > 14 dB      | > 18 dB                                                           | > 18 dB      | > 18 dB                        | > 18 dB      |  |
| Cross-Polar Port-to-Port Isolation    | > 25 dB                                                           | > 25 dB      | > 25 dB                                                           | > 25 dB      | > 25 dB                        | > 25 dB      |  |
| VSWR                                  | < 1.5:1                                                           | < 1.5:1      | < 1.5:1                                                           | < 1.5:1      | < 1.5:1                        | < 1.5:1      |  |
| Passive Intermodulation (2x20W)       | ≤ -150dBc                                                         | ≤ -150dBc    | ≤ -150dBc                                                         | ≤ -150dBc    | ≤ -150dBc                      | ≤ -150dBc    |  |
| Input Power                           | 500 Watts CW                                                      | 500 Watts CW | 300 Watts CW                                                      | 300 Watts CW | 300 Watts CW                   | 300 Watts CW |  |
| Polarization                          | Dual Pol 45°                                                      | Dual Pol 45° | Dual Pol 45°                                                      | Dual Pol 45° | Dual Pol 45°                   | Dual Pol 45° |  |
| Input Impedance                       | 50 Ohms                                                           | 50 Ohms      | 50 Ohms                                                           | 50 Ohms      | 50 Ohms                        | 50 Ohms      |  |
| Lightning Protection                  | DC Ground                                                         | DC Ground    | DC Ground                                                         | DC Ground    | DC Ground                      | DC Ground    |  |

## **Mechanical Specifications**

Dimensions (LxWxD) 92.4 x 14.8 x 7.4 inches (2348 x 376 x 189 mm)

Survival Wind Speed > 150 mph

Front Wind Load 332 lbs (1479 N) @ 100 mph (161 kph) 193 lbs (860 N) @ 100 mph (161 kph) Side Wind Load

Equivalent Flat Plate Area 13.0 ft<sup>2</sup> (1.2 m<sup>2</sup>) Weight (without Mounting) 68 lbs (31 kg) **RET System Weight** 5.0 lbs (2.25 kg)

Connector 6; 7-16 DIN female long neck

Mounting Pole 2-5 inches (5-12 cm)





## **Antenna Patterns\***



**Bottom View** 



\*Typical antenna patterns. For detail information on antenna pattern, please contact us at info@cciproducts.com. All specifications are subject to change without notice.



## 65° OctoPort Multi-Band Antenna

## Model OPA-65R-LCUU-H8



## Octoport Multi-Band Antenna Array

## **Benefits**

- RET System allows Independent Tilt of each band specific paired port
- Reduces tower loading
- Frees up space for tower mounted Remote Radio Heads
- Single radome with eight ports
- All Band design simplifies radio assignments
- Sharp elevation beam eases network planning

The CCI Octoport Multi-Band Antenna Array is an industry first 8-port antenna with full WCS Band Coverage. With four high band ports covering PCS, AWS and WCS bands, two 700 MHZ ports, and two 850 MHz ports our octoport antenna is ready for 4X4 high band MIMO.

Modern networks demand high performance, consequently CCI has incorporated several new and innovative design techniques to provide an antenna with excellent side-lobe performance, sharp elevation beams, and high front to back ratio.

Multiple networks can now be connected to a single antenna, reducing tower loading and leasing expense, while decreasing deployment time and installation cost.

Full band capability for 700 MHz, Cellular 850 MHz, PCS 1900 MHz, AWS 1710/2155 MHz and WCS 2300 MHz coverage in a single enclosure.

All CCI antennas are manufactured under ISO 9001.

## **Features**

- ♦ High Band Ports include WCS Band
- Four High Band ports with four Low Band ports in one antenna
- ♦ Sharp elevation beam
- ♦ Excellent elevation side-lobe performance
- Excellent MIMO performance due to array spacing
- ♦ Excellent PIM Performance
- ♦ A multi-network solution in one radome

## **Applications**

- ♦ 4x4 MIMO on High Band and Dual 2x2 MIMO on 700 & 850 Low Bands
- ♦ Adding additional capacity without adding additional antennas
- ♦ Adding WCS Band without increasing antenna count









## 65° OctoPort Multi-Band Antenna

## Model OPA-65R-LCUU-H8

## **OPA-65R Multi-Band Antenna Electrical Specifications**

| Eraguanas Danga                       | 2 X Low Band<br>Ports (L) which     | 2 X Low Band<br>Ports (C) which | 4 X High Band Ports (H1 & H2) which cover the full range from 1710-2360 MHz |              |              |               |
|---------------------------------------|-------------------------------------|---------------------------------|-----------------------------------------------------------------------------|--------------|--------------|---------------|
| Frequency Range                       | cover the range<br>from 698-787 MHz |                                 |                                                                             | 1710-1755/2  | 110-2170 MHz | 2305-2360 MHz |
| Gain                                  | 14.7 dBi                            | 15.5 dBi                        | 17.0 dBi                                                                    | 16.5 dBi     | 17.2 dBi     | 17.1 dBi      |
| Azimuth Beamwidth (-3dB)              | 65°                                 | 61°                             | 62°                                                                         | 67°          | 64°          | 61°           |
| Elevation Beamwidth (-3dB)            | 10.1°                               | 8.5°                            | 5.6°                                                                        | 6.2°         | 5.0°         | 4.5°          |
| Electrical Downtilt                   | 2° to 10°                           | 2° to 10°                       | 0° to 8°                                                                    | 0° to 8°     | 0° to 8°     | 0° to 8°      |
| Elevation Sidelobes (1st Upper)       | < -17 dB                            | < -17 dB                        | < -19 dB                                                                    | < -18 dB     | < -18 dB     | < -17 dB      |
| Front-to-Back Ratio @180°             | > 28 dB                             | > 28 dB                         | > 35 dB                                                                     | > 35 dB      | > 35 dB      | > 35 dB       |
| Front-to-Back Ratio over ± 20°        | > 28 dB                             | > 27 dB                         | > 28 dB                                                                     | > 27 dB      | > 27 dB      | > 28 dB       |
| Cross-Polar Discrimination (at Peak)  | > 24 dB                             | > 20 dB                         | > 25 dB                                                                     | > 25 dB      | > 25 dB      | > 25 dB       |
| Cross-Polar Discrimination (at ± 60°) | > 16 dB                             | > 14 dB                         | > 18 dB                                                                     | > 18 dB      | > 18 dB      | > 18 dB       |
| Cross-Polar Port-to-Port Isolation    | > 25 dB                             | > 25 dB                         | > 25 dB                                                                     | > 25 dB      | > 25 dB      | > 25 dB       |
| VSWR                                  | < 1.5:1                             | < 1.5:1                         | < 1.5:1                                                                     | < 1.5:1      | < 1.5:1      | < 1.5:1       |
| Passive Intermodulation (2x20W)       | ≤ -150 dBc                          | ≤ -150 dBc                      | ≤ -150 dBc                                                                  | ≤ -150 dBc   | ≤ -150 dBc   | ≤ -150 dBc    |
| Input Power                           | 500 Watts CW                        | 500 Watts CW                    | 300 Watts CW                                                                | 300 Watts CW | 300 Watts CW | 300 Watts CW  |
| Polarization                          | Dual Pol 45°                        | Dual Pol 45°                    | Dual Pol 45°                                                                | Dual Pol 45° | Dual Pol 45° | Dual Pol 45°  |
| Input Impedance                       | 50 Ohms                             | 50 Ohms                         | 50 Ohms                                                                     | 50 Ohms      | 50 Ohms      | 50 Ohms       |
| Lightning Protection                  | DC Ground                           | DC Ground                       | DC Ground                                                                   | DC Ground    | DC Ground    | DC Ground     |

## **Mechanical Specifications**

**Antenna Patterns\*** 

Dimensions (LxWxD) 92.7 x 14.4 x 7.0 inches (2355 x 366 x 179 mm)

Survival Wind Speed > 150 mph

Front Wind Load 327 lbs (1453 N) @ 100 mph (161 kph) Side Wind Load 186 lbs (829 N) @ 100 mph (161 kph)

Equivalent Flat Plate Area 12.9 ft² (1.2 m²)
Weight (w/o RET/Mounting) 88 lbs (40 kg)
RET System Weight 7.0 lbs (3.0 kg)

Connector 8; 7-16 DIN female long neck

Mounting Pole 2-5 inches (5-12 cm)





Bottom View Rear View



\*Typical antenna patterns. For detail information on antenna pattern, please contact us at info@cciproducts.com. All specifications are subject to change without notice.



# Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass

Tel: 201-342-3338 Fax: 201-342-3339 www.cciproducts.com

## **General Information**



CCI's Triple Band TMA with 700/850 bypass contains two triple band TMA's in a single housing. The TMA's are fully duplexed and share a single LNA for all three bands. The bypass path provides excellent isolation to the TMA path. Separate antenna ports for the bypass path and TMA path are combined onto a single BTS port. Low noise high linearity

amplifiers improve the uplink sensitivity and the receive performance of base stations. The TMA is fully compliant with the latest AISG 2.0 specification. The TMA supports CDMA, EDGE/GSM, UMTS and LTE BTS equipment. The TMA is ideally suited for sites upgraded to quadband using the existing infrastructure. The TMA allows the sharing of feeder lines for both AWS and PCS bands thus reducing tower loading, leasing, and installation costs. The input and output connectors are located inline for ease of installation in space constrained areas such as uni-pole structures and stealth antennas.

# AISGY Antenna Interface Standards Group

3

## ModelTMABPDB7823VG12A

## **Contents:**

| General Info and Technical<br>Description |   |  |  |
|-------------------------------------------|---|--|--|
| Elect & Mech. Specs                       | 2 |  |  |

Block Diagram & Outline Drawing

#### **Features:**

- Small lightweight unit
- Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass
- Independent Gain Control
- High linearity
- Lightning protected
- Fail-safe bypass mode
- High reliability

## **Technical Description**

The TMA system is an outdoor quad band tower mount unit which provides low noise amplification of PCS, AWS, and WCS uplink signals combined with 700/850 bypassed signals from separate antenna ports to a common BTS port. The tower mount unit consists of 14 band-pass filters, two redundant low noise amplifiers (LNA) with bypass failure circuitry, two bias tees, AISG control circuitry, and lightning protection circuitry all housed in an IP68 enclosure suited to long life masthead mounting. The AWS, PCS and WCS paths are dual duplexed to separate the low power uplink signals from the high power down link signals at the BTS and antenna ports. The AWS, PCS, and WCS uplink signals are amplified with a dedicated ultralow noise PHEMT LNA with adjustable gain control. The unit provides protection against lightning strikes via a multistage surge protection circuit. DC power and AISG 2.0 control is provided via the BTS feeder cable. The unit operates in current window alarm (CWA) mode until a valid AISG message is detected, at which point it automatically switches to AISG mode. Once in AISG mode, the unit can only switch back to CWA mode with the receipt of an AISG CCI vendor defined command. In CWA mode, the unit requires 12VDC at each BTS port and follows typical current window convention. In AISG mode, the unit will accept 10-30 VDC from either BTS port. In AISG mode, the unit does not require an AISG 2.0 compatible site control unit (SCU) and may also be powered by a standard power distribution unit (PDU).

An optional Site Control Unit (SCU) is available to power up to 32 AISG modules per sector and to provide the monitoring and alarm functions for the system. The SCU is housed in a single (1U) 1.75" x 19" rack and contains dual redundant power supplies capable of being "hot swapped" that provide a regulated DC supply voltage on the RF coax for the tower mount amplifiers.

# CCI Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass Typical Specifications



| Description                               |               | Typical Specifications                          |                                                 |                                                 |  |  |  |
|-------------------------------------------|---------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|--|--|
| Electrical Specifications                 | 700/850       | PCS                                             | AWS                                             | wcs                                             |  |  |  |
| Receive Frequency Range                   | -             | 1850 – 1910 MHz                                 | 1710 – 1755 MHz                                 | 2305 – 2320 MHz                                 |  |  |  |
| Transmit Frequency Range                  | -             | 1930 – 1990 MHz                                 | 2110 – 2155 MHz                                 | 2345 – 2360 MHz                                 |  |  |  |
| Bypass Frequency Range                    | 698 - 894 MHz | -                                               | -                                               | -                                               |  |  |  |
| Amplifier Gain                            | -             | 6 to 12 dB Adjustable in 0.25 dB steps via AISG | 6 to 12 dB Adjustable in 0.25 dB steps via AISG | 6 to 12 dB Adjustable in 0.25 dB steps via AISG |  |  |  |
| Gain Variation                            | -             | ±1.0 dB                                         | ±1.0 dB                                         | ±1.0 dB                                         |  |  |  |
| System Noise Figure                       | -             | 1.4 dB Typ.                                     | 1.3 dB Typ.                                     | 1.3 dB Typ.                                     |  |  |  |
| Input Third Order Intercept Point         | -             | - +12 dBm Min at Max. Gain                      |                                                 |                                                 |  |  |  |
| Input / Output Return Loss                |               | 18 dB Min all por                               | ts, 12 dB Min. Bypass Mod                       | е                                               |  |  |  |
| Insertion Loss                            | 0.25 dB Typ.  |                                                 |                                                 |                                                 |  |  |  |
| Transmit Passband                         | -             | 0.5 dB Typical                                  | 0.4 dB Typical                                  | 0.4 dB Typical                                  |  |  |  |
| Bypass Mode, (PCS/AWS/WCS)<br>Rx Passband | -             | 2.5 dB Typ.                                     | 2.5 dB Typ.                                     | 2.5 dB Typ.                                     |  |  |  |
| Filter Characteristics                    |               |                                                 |                                                 |                                                 |  |  |  |
| Continuous Average Power                  |               | 20                                              | 00 Watts max                                    |                                                 |  |  |  |
| Peak Envelope Power                       |               |                                                 | 2 KW max                                        |                                                 |  |  |  |
| Intermodulation Performance               |               |                                                 |                                                 |                                                 |  |  |  |
| IMD at ANT port in Rx Band                |               | < -112 dBm (-158                                | 5 dBc) [2 tones at +43 dBm                      | 1]                                              |  |  |  |
| Operating Voltage                         |               | +10V to +30V D0                                 | C provided via coax or AISC                     | 9                                               |  |  |  |
| Power Consumption                         |               |                                                 | <2.0 Watts                                      |                                                 |  |  |  |
| Mechanical Specifications                 |               |                                                 |                                                 |                                                 |  |  |  |
| Connectors                                |               | DIN 7-16                                        | female x 2; AISG x 1                            |                                                 |  |  |  |
| Dimensions (Body Only)                    | 10.63"        | (H) x 11.024" (W) x 3.72" (                     | D); (290.60 (H) x 280.00 (V                     | V) x 95.0 (D) mm)                               |  |  |  |
| Dimensions (with Conn. & Bracket)         | 14.25" (      | (H) x 11.024" (W) x 4.11" (E                    | ); (362.00 (H) x 280.00 (W                      | ) x 104.40 (D) mm)                              |  |  |  |
| Weight                                    | 23            | 3.1 Lbs. (10.5 Kg) - with Bra                   | ckets; 22 Lbs. (10 Kg) - wit                    | hout brackets                                   |  |  |  |
| Mounting                                  |               | Pole/Wa                                         | II Mounting Bracket                             |                                                 |  |  |  |
| <b>Environmental Specifications</b>       |               |                                                 |                                                 |                                                 |  |  |  |
| Operating Temperature                     |               | -4                                              | 0° C to +65°C                                   |                                                 |  |  |  |
| Lightning Protection                      |               | 8/20us, ±2KA max,                               | 10 strikes each, IEC61000-                      | -4-5                                            |  |  |  |
| Enclosure                                 |               |                                                 | IP68                                            |                                                 |  |  |  |
| MTBF                                      |               | >5                                              | 600,000 hours                                   |                                                 |  |  |  |

All specifications are subject to change. The latest specifications are available at www.cciproducts.com

## Communication Components Inc.

## Ultra-Low Profile Monopole Mounts









Shown with optional work support platforms (3).

## Ultra-Low Profile Monopole Mounts

- Engineered specifically for 4G (RRU) build outs.
- Increased capacity without an inflated price.
- Low Profile design for reduced tower loading.
- Easily adaptable to include work platforms.
- All round members reduce the risk of migratory bird nesting.
- Complete kits include everything shown. Note: NP versions include antenna pipe mounting hardware.

| Part #    | Pole Diameter          | Face Width            | Mounting Pipes    | Price      |
|-----------|------------------------|-----------------------|-------------------|------------|
| ULP12-NP  | 12" - 45"              | 12′-6″                | (12) 2-3/8" x 63" | \$2,425.00 |
| ULP12-472 | 12" - 45"              | 12′-6″                | (12) 2-3/8" x 72" | \$2,785.00 |
| ULP12-484 | 12" - 45"              | 12′-6″                | (12) 2-3/8" x 84" | \$2,810.00 |
| ULP12-496 | 12" - 45"              | 12′-6″                | (12) 2-3/8" x 96" | \$2,830.00 |
| ULP14-NP  | 12" - 45"              | 14'-6"                | No Antenna Pipes  | \$2,465.00 |
| ULP14-472 | 12" - 45"              | 14'-6"                | (12) 2-3/8" x 72" | \$2,825.00 |
| ULP14-484 | 12" - 45"              | 14'-6"                | (12) 2-3/8" x 84" | \$2,845.00 |
| ULP14-496 | 12" - 45"              | 14'-6"                | (12) 2-3/8" x 96" | \$2,870.00 |
| RM-ADK    | Large-Pole Adapter Kit | \$380.00              |                   |            |
| WP197-10  | 10                     | ' Work Support Platfo | orm               | \$315.00   |